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INTRODUCTION

High-quality, homogeneous time series data are essential to analyse climate variability and 
change.

Homogenization aims to make data “homogeneous”. This word derives from the ancient Greek 
and means “of the same nature”. Unfortunately, most long-term raw climate time series do not 
fulfil this principle and are internally inhomogeneous, that is not of the same nature, and are 
therefore unsuitable for statistical climate change analysis. Non-climatic factors such as change 
in the circumstances of the measurements can substantially affect measured values and cause 
distortions in the statistical behaviour of the time series. The impact of these distortions can be 
comparable to that of climate change and may lead to erroneous conclusions.

Each data value arriving at the computer of a user is the result of a series of consecutive 
procedures: a set of instruments is deployed in a location, the value is measured, recorded, 
undergoes transformations and is included in a database, then it is transmitted to the 
intermediate and final users. With regard to long-term time series data, some of these procedures 
may have been altered over the years. In a temperature time series starting in the late nineteenth 
century, the thermometer has most likely been replaced several times or even substituted with 
an electronic sensor in recent decades. The shelter has probably changed from an open stand to 
a Stevenson screen and then possibly to a multi-plate screen if the station has been automated. 
Around the middle of the twentieth century, many observation stations were moved to airports 
to service the growing demand for civil aviation. If the station remained at the same location, 
the surroundings have probably been altered. For example, if the station was deployed in the 
outskirts of a village 100 years ago, today, it might be surrounded by buildings. Perhaps due to 
land use changes or other practical reasons, the station has been relocated to a more convenient 
place in the suburban area. If we combined the observations made in such different periods, 
they would obviously not be comparable. It is rare, although not unknown, for a climate data 
record of 100 years or more to be truly homogeneous. For example, in the Australian ACORN-SAT 
temperature dataset, only 2 out of 112 stations (both starting in the 1940s) were found to be 
homogeneous for both maximum and minimum temperatures, and in Europe, the period 
between two detected breaks in temperature observations is thought to be, on average, about 
20 years.

The situation described in the previous paragraph implies that we will not be able to make solid 
inferences about the temporal evolution (for example, compute reliable trends) of climate time 
series without ensuring that all the observations and the derived time series are comparable. 
No climate time series should be used without homogenization testing and adjustment, 
where appropriate, and all National Meteorological and Hydrological Services (NMHSs) 
and climate data providers that create and deliver climate datasets should routinely conduct 
homogenization. 

There are two fundamental types of homogenization: homogenization of the annual, seasonal 
or monthly means, and homogenization of the distribution that also adjusts the variability around 
the mean as well as higher order statistics of the data. The focus of this guidance will be on the 
homogenization of the means.

Climatic datasets of any kind typically contain inhomogeneities. This guidance will be limited, 
however, to the homogenization of instrumental land station data. 

Many lessons will be applicable to the homogenization of radiosonde data (Jovanovic et al., 2017, Haimberger 
et al., 2012) and other types of data. For more information on the homogenization of marine in-situ data, see Kent 
et al. (2016), Kennedy et al. (2011) and Huang et al. (2015). Some papers on biases and homogenization of satellite data 
are by Schröder et al. (2016) and Brogniez et al. (2016).

Chapters 1–3 of these guidelines aim at getting new people started with homogenization, and 
Chapters 4 and 5 discuss more advanced and background topics intended for advanced users 
and developers of homogenization methods. Parts of this publication that contain more detailed 
explanations are printed in a smaller font.



At the time of writing, these guidelines are accompanied by a Frequently Asked Questions (FAQs) page, which is 
available at https://​homogenisation​.grassroots​.is/​. These questions can be of a more practical or more transient nature 
(for example, software bugs and solution for them).
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CHAPTER 1. PREREQUISITES

Homogenization is one step in the processing of climate data (see Figure 1). The preceding steps, 
such as data rescue and quality control, affect the quality of homogenization. 

Data rescue is particularly important for data sparse regions and periods, including those cases where we do have data 
but the station density is not sufficient to reveal important data problems. How well the data could be homogenized 
should be taken into account in the subsequent climate data analysis.

Before homogenizing a dataset, it is important to know how the variable was measured historically throughout the 
observing network and what happened with the stations. In the course of the homogenization process, awareness of 
the amount of missing data is essential. If the volume of missing data crosses a threshold over a period of time, some 
homogenization approaches may not work as expected. Metadata is also important during homogenization, to validate 
the results of statistical homogenization and to document what happened in complicated situations. 

The final section of this chapter highlights the importance of training and identifies selected recent scientific meetings 
on homogenization.

Climate analysis

Validation

Homogenization

Quality control

Network selection

Data rescue

Prevention

Figure 1. Processing of climate data



1.1	 Engagement with observing station network managers

The task of developing and maintaining high-quality time series datasets is simpler when 
there are fewer inhomogeneities that need to be considered. While nothing can be done to 
prevent inhomogeneities that have already occurred, there is considerable value in managing 
an observing station network in such a way as to reduce the number of inhomogeneities in 
current and future data, and/or to facilitate accurate quantification of any inhomogeneities that 
may occur. This is something that requires engagement between climatologists and station 
network managers. It can be challenging, especially if different organizations are responsible for 
managing the observation network and for climate data.

Practices that can help minimize ongoing inhomogeneities include:
–	 Ensuring that proper field trials are carried out for any new observation system before 

they are implemented in the full station network. These field trials should preferably be 
carried out for at least two years (a single year can produce misleading results if that year 
is climatically unusual) and, especially in large countries, they should take place in climates 
representative of the full range of climates found within those countries; 

–	 Ensuring that parallel observations take place where any significant change occurs; that 
such observations start early enough to provide at least two years of overlapping data and 
that these data are archived and shared (see section 1.2 below); 

–	 Identifying sites that are at risk of closure or significant changes in their environment 
(for example, through planned building works nearby) at an early stage, to maximize the 
time available for parallel observations with any new site; 

–	 Where new sites for observing stations are being chosen to replace a current site, the new 
site should match the topography and local environment of the current site as closely as 
possible, to mitigate the risk of a climatically significant change; 

–	 If possible, select sites where the surrounding is unlikely to change in the coming decade(s) 
to centuries;

–	 Also important is the ongoing collection of metadata. Station identifiers should not 
be reused, as this can create confusion and may lead to data being merged from two 
completely unrelated stations. The reuse of station identifiers is a problem particularly for 
international datasets.

A useful WMO report, Protocol Measurement Infrastructure Changes (Brandsma et al., 2019), contains an example of 
protocol for the management of changes in climate networks.

1.2	 Parallel measurements

A recommended practice for major changes in observations is to conduct parallel observations 
between two systems. WMO (2018a) suggests that “observations from new instruments 
should be compared over an extended interval (at least one year; see the Guide to Climatological 
Practices ( … ) before the old measurement system is taken out of service”. The updated Guide 
to Climatological Practices (WMO, 2018b) recommends: “Where feasible and practical, both the 
old and new observing stations and instrumentation should be operated for an overlapping 
period of at least one year, and preferably two or more years, to determine the effects of 
changed instruments or sites on the climatological data.” This suggested range of overlapping 
periods reflects the fact that longer is better, but shorter parallel measurements should not be 
discouraged by specifying long periods, because they are better than none.

These recommended practices are not universally followed (adherence was less common in the 
past than it is now), and parallel observations are not an option where an inhomogeneity arises 
because of an unexpected change around the station (for example, in the site environment) 
rather than at the station itself. Adherence can be improved by making the management of 
changes part of the operational practice (see section 1.1).
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The specific importance of parallel observations for the homogenization process is highlighted in 
section 2.4. 

1.3	 Data rescue

Data rescue is the ongoing process of identifying and preserving all data and related metadata, 
records and climate archives that are at risk of being lost, and of digitizing current and past data 
into computer-compatible form for easy access. The identification process also entails searching 
for data that may be held in non-NMHS repositories such as universities, libraries and national 
archives. In some cases, historical data may be held overseas. Data rescue includes also migration 
from obsolete or computer corrupted media to modern media and readable formats. 

Data rescue plays two important roles in the development of homogenized climate datasets. 
The first and most obvious is that a dataset will not be homogenized and analysed unless it is in 
digital form. Less obviously, homogenization is most effective when a candidate station can be 
compared with a large number of reference stations in the region, something which requires 
digitized data from those reference stations as well as the candidate station. Reference stations 
are also useful in quality control, as are sub-daily (for example, hourly) observations at the 
candidate station. 

Chapter 2 expounds the importance of the signal-to-noise ratio (SNR) for homogenization. When the SNR is 
understood as the variance of the break signal divided by the variance of the noise, it is important that the SNR is above 
one. Until this level is reached, further data rescue for the period and region should be prioritized, provided further 
non-digitized data exist. Digitizing clusters close to a candidate station of interest are preferable to a uniform sampling 
when it comes to data quality control and homogenization. The digitization of short series can also be worthwhile 
where they can help quality control and homogenization.

A detailed discussion of the practical aspects of data rescue is outside the scope of this publication. For further 
information, see WMO (2016). 

1.4	 Quality control

Quality control aims to verify that a reported data value is representative of what was intended to 
be measured and that it has not been contaminated by unrelated factors (WMO, 2018b). 

Quality control should be performed before homogenization because large outliers can 
affect the homogenization process. Sometimes quality control is performed again after 
homogenization because the higher data quality allows the detection of more subtle erroneous 
values. Moreover, if the (recent) data was subjected to real-time quality control, an additional 
quality control of the time-series data must be made in order to achieve the most uniform 
possible data quality across the full period of record. 

Quality control can also be a source of inhomogeneities, especially in daily data when these are analysed for changes 
in weather variability and extremes. The methods used for quality control of data have often changed over time 
and this can introduce inhomogeneities if, for example, erroneous data were not detected in the past, but now are 
being flagged. In many cases, older historical data underwent very limited quality control; in particular, methods 
that involve spatial intercomparison of data with other stations have only become practical since the introduction of 
modern computer systems. More recently, the level of manual intervention in quality control is being reduced in many 
countries. Whereas in the recent past, a data point flagged by an automatic system might be subject to manual review, 
now more and more quality control is purely automatic, sometimes leading to a greater risk of “false positives” where 
valid extremes are flagged as suspect.

Derived time series can have quality control problems that were not obvious in single observations. It is desirable to 
carry out quality control at various timescales to detect the full range of possible error modes. 
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Discussion of specific quality control tests and methods is outside the scope of this publication. 
For a fuller discussion of quality control, readers are referred to WMO (1993) and WMO (1986); 
guidance material was being updated at the time of writing this publication. For a good example 
of quality control applicable to a global dataset, see Dunn et al. (2012).

1.5	 Station history and metadata

The following sub-sections describe the situation of metadata in the past as relevant to current 
homogenization activities. Modern metadata standards and station identifiers have been 
defined by the WMO Integrated Global Observing System (WIGOS) (see WMO, 2019).

1.5.1	 What are metadata?

In the context of homogenization, the term metadata is used to refer to what in some other 
contexts is called station metadata. Especially important for homogenization is the station 
history. This includes information about the observation site and instruments, as well as 
observation and data-processing procedures throughout the station history. Station metadata 
may include, but is not limited to:

–	 The location and elevation of a station and dates of changes therein;

–	 The types and conditions of instruments used at a location;

–	 Dates of replacements, for example, of instruments and screens;

–	 Land use and vegetation type in the vicinity of the station;

–	 Changes in the surrounding area (siting);

–	 The standard times and frequency at which observations are made; 

–	 The name of the observer(s) (for manual stations);

–	 Procedures for processing data (for example, the definition of daily mean temperature); 

–	 Dates and results of calibrations or tolerance checks carried out at the station;

–	 Details of maintenance (scheduled or unscheduled) carried out at the station. 

1.5.2 	 The value of metadata and their limitations

Metadata, where they exist, are extremely valuable for data homogenization. While statistical 
methods for detecting inhomogeneities can provide strong evidence that an inhomogeneity 
can occur, metadata can indicate the cause of an inhomogeneity and even determine the date 
(if recorded) of its occurrence with high precision, whereas statistical methods can determine 
the timing only with limited precision (typically within a few months to a year). Metadata can 
also provide evidence of inhomogeneities in situations where statistical methods have limited or 
no effectiveness – for example, where there are no nearby reference stations, or where a change 
affects a large part of the network at the same time.

Homogenization is normally most effective when it uses a combination of metadata and 
statistical methods. 

There is no consensus on whether metadata should influence the decision to set or not to set a break found by statistical 
homogenization. Doing so is potentially dangerous because not all breaks are equally well documented. The best-
known example would be an urban station where the gradual urbanization is typically not well documented, unlike 
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relocations. Removing only the documented relocations would theoretically make the trend errors larger. On the 
other hand, with several breaks in the candidate and reference series, homogenization can be a difficult combinatorial 
problem. In such cases, known likely breaks can help solve this puzzle.

Metadata are most valuable when they are complete. Many National Meteorological Services have gathered good 
metadata in recent years, but their availability often becomes sparser as one goes further back in history. Moreover, 
older metadata are more likely to be on paper, which means that they can be difficult to locate or use. As most stations, 
particularly prior to the 1990s, were installed to support weather forecasting rather than climate applications, recording 
metadata that was not relevant to a weather forecasting function was often not a high priority. Also, metadata 
reports sometimes provide a snapshot in time and do not indicate the date of a change (for example, two station 
inspection reports five years apart may show the station in different places, but the exact date of the move may not be 
documented). 

Some aspects of metadata are also better documented than others. Experience shows that new instruments are often 
well documented whereas documentation of the site environment, especially outside the immediate vicinity of the 
instrument enclosure, is often limited or non-existent. 

Metadata can take the form of a single point of data (for example, a set of station coordinates) or a more complex 
piece of information (for example, a photo of the station which provides information on the land surface type and 
surrounding obstructions). Even the simpler forms of metadata have some level of uncertainty attached. Until recently, 
station coordinates were rarely recorded with sufficient accuracy to resolve small site moves (in the tens of metres), 
but such moves may still be climatically significant, especially in complex topography or where they affect the site’s 
exposure to wind. In exposed coastal locations, for example, site moves of less than 50 m have been found to have a 
15%–25% impact on observed precipitation. In older datasets, or those exchanged internationally, station coordinates 
are often only reported to the nearest minute or 0.01°, which only resolves the location of the station to within 
about 2 km. 

Metadata may require considerable interpretation, where multiple pieces of metadata information are used to reach a 
conclusion. Separating climate relevant from non-relevant metadata documents can be a time-consuming process.

As with data, metadata can sometimes also be erroneous, so it is useful to have multiple lines of evidence for an 
inhomogeneity where possible. 

1.5.3	 Station identifiers

Determining exactly which station a dataset is associated with is an important part of developing 
long-term homogeneous datasets. In most countries, a station will have a domestic station 
identifier, with stations that report internationally also having a WMO station identifier. It may 
happen that two or more stations share the same WMO station identifier. There may also be 
other identifiers in use, such as a station name, or an International Civil Aviation Organization 
(ICAO) code for an airport site.

It is good practice to associate a station identifier with a station and, if that station undergoes 
a climatically significant change (for example, a significant site move), to cease recording data 
under that identifier and create a new one for the new location. This maximizes the visibility 
of the change, while still allowing a long-term dataset to be created by using a composite of 
multiple identifiers (multiple identifiers are, of course, a necessity if parallel observations are 
taking place). 

It has been, however, common practice to retain a single station identifier even through a significant change. This is 
particularly true for historical data when awareness of the climatic impact of site changes was lower than it is now. 

Note that the WMO station identifier is not a unique station identifier in some national archives. The WMO station 
identifier was initially for weather forecast purposes and its number of digits is limited. Two or more stations can thus 
share the same WMO station identifier. In addition, a new station sometimes reuses the identifier of a closed station; 
there are also cases where national identifiers have been reused. 

International datasets pose particular challenges in identifying stations. Typically, such datasets will contain data from 
multiple sources which may be partial duplicates of each other, with metadata often limited to station coordinates 
(possibly of limited precision) and a station name (which may have multiple possible spellings, especially when it 
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contains non ASCII characters or if the original name is in a language which does not use the Roman alphabet). Rennie 
et al. (2014) detail the procedures used to merge data from multiple sources in one major international dataset, the 
International Surface Temperature Initiative (ISTI) databank. 

1.5.4	 Formats and accessibility of metadata

Metadata can exist in a wide variety of forms. In many National Meteorological Services, some 
or all recent metadata is held in digital form within a searchable database, but large amounts of 
historical metadata normally exist only on paper. 

Metadata may exist in forms that are specific to an individual station, or in documents that cover a large number of 
stations (for example, observation procedures often apply to a whole national network and are covered by national-
level documents rather than station-specific ones). In many countries, stations are inspected regularly by network 
management staff, and these inspection reports form a significant part of available metadata. Sometimes observers, 
their family and newspapers, financial accounting or other external documents can provide additional metadata.

Obtaining access to metadata is often a significant challenge. Substantial quantities of metadata may not be digitized 
and are only available in paper form. Metadata must be part of data rescue operations since they are as important as 
the climate records themselves. Most metadata are specific to individual locations and may be locatable in files indexed 
against that location. Other relevant metadata, especially those dealing with network-wide standards and changes, 
may be in annual reports or other documents which may be more difficult to trace. To use paper documents, it may be 
necessary to visit an archive in person. 

Finally, metadata are normally available in the local language only.

1.6	 Training

Training of personnel involved in homogenization is important for the quality of homogenized 
data. Training has multiple aspects: A good grasp of the general concepts, an understanding of 
the statistical background of the homogenization process and practical advice for selecting the 
most appropriate homogenization methods and for handling the selected software. Moreover, 
the evaluation of the results requires a trained expert. 

At the time of writing this publication, relevant training opportunities include: 

–	 The series of seminars “Homogenization and Quality Control in Climatological Databases” held in Budapest, 
Hungary (HMS, 1996; WMO, 1999; OMSZ, 2001; WMO, 2004; WMO, 2006; WMO, 2010; WMO, 2011; WMO, 2014; 
OMSZ, 2017). The seminars promote the discussion of homogenization methods, with emphasis on their 
theoretical aspects, practical applications and evaluation of methods. Most proceedings of these seminars are 
published through the World Climate Data and Monitoring Programme (WCDMP) series (namely WCDMP-41, 
WCDMP-56, WCDMP-71, WCDMP-75 and WCDMP‑78);

–	 The annual training session, “Climatology, foundation for climate services”, organized by Météo-France;

–	 The Data Management Workshops of the European Meteorological Services Network (EUMETNET); 

–	 The annual session on “Climate monitoring: data rescue, management, quality and homogenization” at the annual 
meeting of the European Meteorological Society;

–	 The annual session on “Development of climate datasets: homogenization, trends, variability and extremes, 
including sub-daily timescales” at the General Assembly of the European Geosciences Union;

–	 The session on “Climate data homogenization and climate trends/variability assessment” at the International 
Meeting on Statistical Climatology.
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The purpose of this chapter is to describe general issues related to the development of 
homogenized datasets. Homogenization is normally best performed with well-tested existing 
software if available; specific software packages for data homogenization are discussed 
separately in Chapter 3. 

There are many factors that can cause inhomogeneities in a climate record. Some will affect only 
a few climate elements at any specific location; some only affect a single location, while others 
may affect an entire observation network or substantial parts of it. This last scenario is important 
as it (a) can cause large-scale bias and is thus climatologically significant, and (b) is difficult to 
remove by statistical homogenization if occurring over a short period. Inhomogeneities may 
have a pronounced seasonal cycle and/or be dependent on weather type (that is, regime-
dependent).

Causes of inhomogeneities include:

–	 A site relocation. For example, early stations often started in towns and villages and were 
later relocated to the outskirts or airports. Early automatic weather stations sometimes 
had to be placed close to buildings (Menne et al., 2010), while with modern technology it 
has become easier to place station in pristine locations or move them from the middle of a 
village to outlying areas (Dienst et al., 2017; Dienst et al., 2019).

–	 A change in the local environment. Examples of changes in micro-siting are growing 
or cut vegetation around a site, or the construction or removal of a building nearby. 
Moreover, watering the grass below the instruments may produce an inhomogeneity. Early 
temperature and precipitation measurements were often performed at a height of several 
meters, while nowadays 1.5 m to 2 m is standard. Development of the larger environment 
(urbanization) can cause a gradual local warming leading to a station relocation, which 
would likely produce a temperature drop. Changes in irrigation practices in the region may 
lead to artificial cooling (Cook et al., 2014). Moving an anemometer from the roof of an 
airport to the standard 10 m level often introduces a big drop in surface wind speed (Wan 
et al., 2010).

–	 A change in the instrumentation. For precipitation, changes in the outside geometry 
and windshield will affect undercatchment and thus produce inhomogeneities (Leeper 
et al., 2015). Changes in gauge or instrument type will affect typical measurement errors 
such as the wetting loss and measuring precision (Wang et al., 2017, 2010). For temperature 
changes in the screen (see for example, Parker, 1994; Böhm et al., 2010; Buisan et al., 2015) 
and thus in radiation and wetting, protection of the thermometer is especially important. 
Even the position of the thermometer within the screen can matter. There was one report of 
a plastic Stevenson screen letting in the sun on hot days. Mechanical ventilation can reduce 
radiation errors, but it can also produce stronger wetting errors and may perturb the 
stable boundary layer. The response time of modern thermometers and their small screens 
is intrinsically much shorter, which is especially important for the daily minimum and 
maximum temperature due to turbulent fluctuations. The glass of some early thermometers 
shrunk in the first years (Winkler, 2009). Calibration errors can also cause inhomogeneities. 
Mercury thermometers cannot record temperatures below -39 °C, which is why minimum 
temperature thermometers have typically been replaced with alcohol thermometers. 
Record temperatures can be outside of the (calibration) range of some automatic weather 
sensors.

–	 A change of observer. The influence of the observer is especially notable for elements 
which involve some level of observer judgement, such as cloud or visibility. In voluntary 
networks, an observer change can also signal a relocation, which might not be documented 
elsewhere.

–	 A change in observation procedures. For instance, a change in observation time, which 
often happens simultaneously in the entire network. This is important for fixed-hour 



measurements, but also for the daily minimum and maximum temperatures (Vincent 
et al., 2009; Degaetano, 2000; Vose et al., 2003; Karl et al., 1986). Changes in maintenance 
may also be important, for example, the painting, cleaning and replacement schedule of 
the screens. With automatic weather stations (AWSs) the loss of ventilation due to icing 
may not be noticed and damage and soiling may be detected later. Changes in calibration 
procedures can potentially affect an entire network.

–	 A change in data processing. In much of the world, the daily mean temperature 
is computed from the daily maximum and minimum temperatures. However, early 
measurements in Europe were often made at fixed hours and the mean temperature was 
computed from them, sometimes in combination with the daily minimum or maximum 
temperature. With AWSs many different definitions of the daily mean have become 
possible. Quality control and validation procedures, as well as the ability to carry out quality 
control, have changed over time. For precipitation, another key element is to know how 
solid precipitation was measured and converted to the equivalent liquid precipitation 
amount for archiving (Wang et al., 2017).

–	 Digitization and database errors. Digitization may produce inhomogeneities, for example, 
when a minus sign is forgotten during digitization of a section of data on paper (when 
the sign is indicated in colour). Data from stations with the same or similar names may 
be mixed up. In global databases, the data can come from several different sources with 
unclear provenance. As a result, station data series with similar names may be mixed up, 
or slightly different series originating from the same station may be kept as different series. 
Also, metadata such as the station location and units can be wrong. Typical database errors 
are values that are 10 times too large, especially for precipitation. 

The remainder of this chapter consists of 12 sections mainly devoted to the following topics: 
physical and statistical homogenization, the roles of reference series, how to choose or compose 
reference series, options if no reference series exist, validation and operational update of 
homogenization results, and documentation of the homogenization procedure and resulting 
dataset. 

2.1	 Physical and statistical homogenization

Whether a homogenization method is called physical or statistical generally depends on how 
the corrections are computed. Sometimes the main evidence of inhomogeneity in a candidate 
station is statistical in nature: a large jump in one time series or a candidate station that behaves 
clearly differently from its neighbours. In such cases, the corrections need to be computed 
statistically, hence the method used is called statistical homogenization. 

Sometimes the reasons for the inhomogeneities are known and this can help make more 
accurate adjustments. Physical homogenization refers to this case where the adjustments 
are being estimated using a physical relationship between different variables. For example, a 
logarithmic wind profile, which represents the relationship between surface wind speed and 
anemometer height and surface roughness length, was used to adjust surface wind speed data 
for anemometer height changes (Wan et al., 2010); and the hydrostatic model, which represents 
the relationship between station and sea level pressures and dry-bulb temperatures, was used to 
correct errors in both station and mean sea level pressure data due to errors in station elevation 
(Wan et al., 2007).

Another example would be when the time of observation changes and observations made at both reading times can be 
used to correct this problem (Vose et al., 2003; Vincent et al., 2009). This is also referred to as physical homogenization, 
although the method used to estimate the adjustment is not strictly physical.

When there is a documented station relocation, we know what happened physically, but the size of the jump needs 
to be determined statistically, thus this is still considered as a statistical homogenization. The use of parallel data to 
estimate the size of the jump (for a relocation) is considered statistical homogenization using a very good reference 
station, which can be expected to produce more reliable/robust results.
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Physical homogenization can also include statistical estimates. For example, for changes in the time of observation 
in the United States, the National Oceanic and Atmospheric Administration (NOAA) developed a correction method 
based on hourly observations (Vose et al., 2003). To be able to correct data from stations that only have daily 
observations, multiple linear regression was used to compute monthly time of observation bias corrections from 
stations with hourly data. Predictors were the station coordinates (time zone, latitude and longitude), observation hour, 
average diurnal temperature range and average day-to-day temperature difference (Karl et al., 1986). Similar methods 
were developed for Canada to account for a change in observation time from 00:00 to 06:00 UTC in 1961 (Vincent 
et al., 2009), whilst more recent 1-minute resolution data was used to assess the expected impact of an observation 
time change from 00:00 to 09:00 local time in 1964 at some Australian sites (Trewin, 2012).

It is best to use a physical relationship to estimate the adjustments in cases where known physical relationships 
between variables are sufficiently robust that the related adjustments are likely to give better results than statistical 
homogenization, such as in the cases of Wan et al. (2010) and Wan et al. (2007) mentioned above. However, 
adjustments estimated on the basis of a physical relationship need accurate metadata (such as anemometer heights, 
station elevations) and may need also other data (such as dry-bulb temperature and surface roughness in the examples 
above). These metadata or data are often not available. Physical homogenization can be done only when the cause 
of inhomogeneities is known and the related metadata/data is available. Thus, physical homogenization is normally 
additional work in the sense that it can only be applied to a part of the inhomogeneities and statistical homogenization 
should thus always be also applied to correct likely remaining ones.

When both physical and statistical methods are possible, it is recommended to compute both 
adjustments and compare them with each other. Comparing both types of adjustment can help 
identify problems. Whether physical or statistical homogenization is preferred for the actual 
corrections depends on the accuracy of the corrections. In most cases the physical adjustments 
are more accurate, but not always. First applying physical adjustments may make the remaining 
inhomogeneity too small to be detected with statistical homogenization, but still large enough 
to be climatologically problematic on the large scale. Thus, choosing the most accurate method 
may give better results than applying both methods one after another. 

2.2	 Selecting the data to be homogenized

2.2.1	 Which stations should be selected?

The guidance in this subsection applies to the homogenization of datasets rather than a single time series.

There are two broad approaches that can be used for selecting the data to be homogenized in a 
national or regional dataset. 

The first is to include all stations that meet the preset criteria for factors such as length of 
record and data completeness, while the second is to consider only the stations, chosen for the 
best observational quality (for example, best site standards, fewest documented moves) or 
geographic representativeness. 

Both approaches have been used for major national datasets; for example, national homogenized 
datasets from the United States, Canada and Spain (Menne et al., 2009; Vincent et al. (2012); 
Guijarro, 2013) include all available stations with a sufficiently long record, whereas the Swiss, 
another Spanish and Australian national datasets (Begert et al., 2005; Brunet et al., 2006; Trewin, 
2013) select stations assessed to be of the best quality and representativeness out of a broader 
national network, which is several times larger. 

A strong selection reduces the amount of work, which means that more attention can be given to 
single stations. The goal should be to obtain a SNR, defined as the square root of the variance of 
the break signal divided by the variance of the noise signal (Lindau and Venema, 2018a)) greater 
than one. Using several stations has the advantage that regional climates can also be studied, 
and maps can be produced.

Methods to compute the SNR of a difference time series are introduced in Lindau and Venema (2018a, 2019).

11



2.2.2 	 How to prepare data for homogenization

Once a set of stations has been selected for homogenization, the next step is to determine which 
data from those stations will be used in the change point detection process. Decisions made here 
are important because some inhomogeneities may have a seasonal cycle – for example, a change 
in the wind shielding of a precipitation gauge at a cold-climate site may have little impact on 
summer precipitation, but a large impact on precipitation in winter when much of it falls in the 
form of snow. 

Three possible options are:

(a)	 To use only annual data (annual sum or mean, sometimes combined with magnitude of 
seasonal cycle);

(b)	 To use monthly or seasonal time series in parallel with each other (and/or with annual data);

(c)	 To use monthly or seasonal data (either in their original form or as anomalies) as a single 
time series (also referred to as serial or consecutive monthly or seasonal time series).

The use of annual data typically has the most favourable SNR for inhomogeneities that affect all, or a substantial 
part, of the year. Compared to serial monthly or daily data, the lower SNR is, however, exactly compensated by the 
larger number of values (in the case of white noise and as long as the breaks are on the 1st of January; Lindau and 
Venema, 2018a). On the other hand, using annual data may result in failure to detect inhomogeneities that only affect 
part of the year, or inhomogeneities that have opposite impacts in different seasons and cancel each other out in an 
annual mean (for example, where a site is moved from an exposed coastal location to one further inland, it is likely to be 
warmer in summer but cooler in winter). In such cases using the seasonal cycle or the option (b) above can improve the 
results.

Using monthly or seasonal time series in parallel (that is, carrying out tests separately on time series for each month/
season with one data point per year) allows the detection of seasonally varying inhomogeneities. In some cases, a 
station which shows no significant inhomogeneity at an annual timescale may show significant seasonal signals, for 
example, where opposite signals in summer and winter cancel each other out in an annual mean. This method requires 
the consolidation of information from the various monthly/seasonal tests with each other, and with annual values, to 
determine a final set of potential inhomogeneities. However, these individual parallel monthly (or seasonal) series are 
the same length as the corresponding annual data series, yet they are noisier. Consecutive monthly (or seasonal) series 
form longer time series, a fact that partly compensates for the noise. A test on parallel monthly data helps only in case of 
dense networks.

Some methods use monthly or seasonal data as a single time series, also called serial monthly/seasonal or consecutive 
monthly/seasonal series/methods. This increases the temporal resolution in detecting inhomogeneities and, like parallel 
monthly methods, avoids assigning the entire year with the break to the homogeneous subperiod either before or after 
the break. However, serial monthly/seasonal methods may also miss a seasonally variable signal. Such methods may 
also be complicated by the fact that, in some climates, not only does the mean value of a time series vary seasonally, 
but its variability may also have a seasonal cycle (for example, in most mid- and high-latitude locations in the northern 
hemisphere, temperature variability is substantially greater in winter than in summer). Also, autocorrelation in 
consecutive monthly or seasonal series is usually higher than in annual series, hence non-negligible, and should be 
taken into account in the statistical test applied. 

Methods using annual data cannot determine the timing of an inhomogeneity, without reference to metadata, to 
a precision greater than one year. However, if the SNR of monthly or seasonal data is not large enough, the change 
date will have a clear uncertainty (Lindau and Venema, 2016). Hence, the greater apparent precision which might be 
obtained from a monthly method can be partly illusory. The greater temporal precision may also sometimes be helpful 
in focussing the search for metadata.

The most widely used methods are option (a) above, for automatic homogenization methods, 
and option (b) with annual data, for manual homogenization. Option (b) is likely to detect a 
broader range of inhomogeneities if applied properly. It is also possible to use two or the three 
options combined (Xu et al., 2017, 2013).
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2.3	 Statistical detection or determination of change points

Metadata should never be assumed to be complete and statistical determination of breakpoints 
should always be applied. For a homogeneity test, the null hypothesis is that the candidate series 
is homogeneous, and the alternative hypothesis is that the candidate series is not homogeneous 
(has one or more change points). In general, a statistical test works by comparing the value of a 
test statistic to its critical value corresponding to the chosen level of significance α (usually 5%). 
The null hypothesis is rejected when the test statistic value exceeds the critical value. The 
significance level α is the likelihood of the null hypothesis being rejected wrongly.

Even for a documented change point (for example, when the time of change is documented in metadata and 
known to the person analysing the data), one still needs to use a statistical test to determine whether or not the 
documented non-climatic change is statistically different from zero at a chosen significance level. Furthermore, even 
when an inhomogeneity is statistically significant, there may still be a large uncertainty in determining the size of the 
adjustment. 

Inhomogeneities are mostly abrupt but can also be gradual (for example, in cases of growing vegetation or 
urbanization). In statistical homogenization, we typically model inhomogeneities as a step function. This also works 
well for gradual inhomogeneities because there are often additional jumps during the gradual inhomogeneity, and 
also because fitting linear trends to model gradual inhomogeneities is often inaccurate, as their behaviour in time can 
be non-linear. Thus, in practice, homogenizing gradual inhomogeneities with multiple breaks works well (Venema 
et al., 2012).

Most of the homogeneity tests are developed to detect mean shifts and thus cannot detect any variance shift or 
probability distribution change that is not accompanied by a mean shift. A variant of the Kolmogorov–Smirnov (K–S) 
test developed by Dai et al. (2011) can be used to detect unknown changes in the probability distribution (including 
variance shift) of the data. Unfortunately, this method has not been included in any data homogenization software. 
Szentimrey (2018) is working on a method for the detection and correction of breaks in the mean and standard 
deviation for normally distributed data.

After a list of change points has been determined to consist of significant non-climatic change points, the adjustments 
needed to homogenize the candidate series must be estimated; this is discussed in section 2.6. Detection and 
correction are mostly performed by comparison with neighbouring stations; more information on reference series can 
be found in section 2.4. Readers are referred to Chapter 3 for detailed descriptions of the software packages available 
for detecting and testing change points and estimating adjustments used in the homogenization of climate data.

2.3.1 	 Incorporating metadata in statistical tests 

A statistical break test provides an estimate of change point position. Its accuracy depends on 
the SNR; if the SNR is well above one, the break position can be estimated accurately (Lindau and 
Venema, 2016). 

Finding documentation for a break can be time consuming. The statistical evidence for a break 
can reduce the period over which the metadata needs to be investigated. The SNR indicates how 
broad this period would need to be. For smaller SNRs, errors of several data-points before or after 
the true change point are possible, as shown in Figure 2. 

When the SNR is very low, a random segmentation of the time series can even explain as much 
of the actual break signal as the segmentation estimated by a homogenization method (see 
Figure 3). In other words, the test rightly detects that the series has inhomogeneities, but their 
estimated positions may be determined more by noise than by the break signal.

When combining statistically estimated breakpoint locations with documented breaks, it should 
be borne in mind that the metadata may be wrong. The likelihood of metadata being wrong and 
the uncertainty in the data depend on the situation and are subjective. Typically, if the metadata 
provide a specific date, the metadata is more accurate, but if the statistical evidence is strong, it 
can take precedence. If a statistically detected break is within a short period (that is, within the 
uncertainty of the break detection) of a change documented without a specific date, one can 
attribute the break to the documented change.
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The statistical tests for detecting unknown change points are different from those for determining the statistical 
significance of documented change points. In case of one unknown breakpoint, every position is tested (multiple 
testing problem) and the maximum expected difference under the null hypothesis is thus larger. The commonly used 
tests for detecting single or multiple unknown change points (mean shifts) are maximal t tests — for example, the 
standardized normal homogeneity test of Alexandersson (1986) and the penalized maximal t test of Wang et al. (2007) 
– or maximal F tests, such as the penalized maximal F test of Wang (2008b), and the tests of Lund and Reeves (2002) 
based on the two-phase regression model. Modern multiple-breakpoint methods, such as PRODIGE, MASH, ACMANT 
and HOMER, effectively test all break combinations and thus also take multiple testing into account; see Chapter 3 for 
details on the methods mentioned in this paragraph.

The commonly used tests for determining the significance of documented change points are the regular Student t 
test, when a reference series is used, and the regular F test, when the series is tested without using a reference series or 
when a trend difference between the candidate and reference series is suspected (Lund and Reeves 2002; Wang 2003; 
Wang 2008a). As explained above, the critical values for the regular t or F test are much smaller than those for the 
corresponding maximal t or maximal F test (see, for example, Lund and Reeves (2002) and Wang (2003)). Thus, the 
use of the regular t or F test for detecting unknown change points would lead to too many false alarms (declare many 
change points that are actually insignificant). 

When metadata are available, one can first use a statistical test to identify significant unknown change points; then, 
one can add all additional documented change points and test their statistical significance. This is necessary because 
some documented changes in observing site, procedure or instrumentation might not induce any significant change in 
the candidate data series, while the statistically identified change points should be taken into account when testing the 
documented breakpoints using the homogeneous subperiod before and after the documented break.

The test for documented breakpoints should only be used for breakpoints of a limited number of clearly documented, 
highly likely causes, such as relocations and screen-type changes. A test for a documented breakpoint should not be 
used for regularly occurring events such as maintenance or calibration. Note that including too many documented 
breaks for testing will reduce the sample size (that is, the segments are shorter) and thus increase the uncertainty 
of the results. Tests for unknown breakpoints are also commonly applied, which is equivalent to notably raising the 
significance level used (Lund and Reeves 2002, Wang 2003).
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2.4	 Reference series

The task of detecting, and adjusting for, an inhomogeneity in a climate time series is made 
more challenging by the fact that any climate time series will contain substantial noise, which 
arises from natural climate and weather variability and measurement errors. This can make 
inhomogeneities difficult to find. For example, it will be difficult or impossible for any statistical 
method to detect a 0.4 °C inhomogeneity in a time series with a standard deviation of 1 °C.

A common method of addressing this problem is comparing the candidate station’s time series 
to a (neighbouring) reference station’s time series. The most typical example is to compute 
a difference time series between the candidate and reference series; then detect and adjust 
the series based on this difference series. The steps to follow in case no reference stations are 
available are discussed below in section 2.5.

The natural variability that exists in a candidate series will also exist in the reference series, hence creating a series that 
compares the candidate and reference series will remove much of the influence of natural climate variability while 
retaining the effect of the inhomogeneity at the candidate site. 
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Figure 3. Accuracy of the estimation of the break signal as a function of the signal-to-noise 
ratio (SNR). The curve with circles shows the results of a breakpoint detection method while 

the other curve shows the results of random segmentations. When the SNR is high (right side 
of graph) the break signal is accurately estimated by the break detection methods (plusses): 

the squared deviation between detected and inserted signal is small. A random 
segmentation, however, can also explain half of the variance of the break signal. When the 

SNR is 0.5 or below, the segmentation of the homogenization method is no better than 
random segmentation. Because the detected breaks explain both noise and break variance, 

the variance is larger than expected in case of noise, and the detection is statistically 
significant. The problem is that the algorithm correctly detects that the observations have 

inhomogeneities but is unable to determine their positions  
(see Lindau and Venema (2018a) for details).



Another advantage of using a reference series is that no assumptions about the statistical nature of the climatic 
variability are necessary, since the use of a representative reference series removes that necessity. The difference time 
series can be assumed to contain white noise (or auto-correlated noise) and inhomogeneities, which greatly simplifies 
the statistical problem. Typically, a reference series will comprise data from one or more locations near the candidate 
station. 

The best possible set of candidate and reference series is a parallel observation of the old and 
new situation at the same site, for example, when a new instrument system is introduced, while 
the old system continues to be in operation for a period of time. 

Parallel observations are most valuable if the “old” part of the parallel observation system is representative of conditions 
before the start of the parallel observation period. However, a common scenario is that the old site environment was 
changed during the period of parallel observations, which makes the parallel observations unrepresentative of the 
old site environment. Comparison with neighbouring station data could help identify this problem and is highly 
recommended.

If there are no parallel measurements available, one can consider making them with the equipment used before 
and after the break or, if the equipment is not available, with replicas created for the experiment. This is especially 
recommended for studying the influence of a historical transition that affected a large part or the entire network 
(Brunet et al., 2011; Mekis and Vincent, 2011; Quayle et al., 1991).

A reference data series can be a composite computed from several neighbouring stations 
(composite reference) or a single neighbouring station (pairwise homogenization). In the latter 
case, inhomogeneities in the comparison series can belong to the candidate as well as the 
reference series and multiple pairs must be investigated to determine which station the break 
belongs to.

There are four considerations for the selection or weighing of reference series: 

(a)	 The set of references need to overlap over the full period of the candidate series; 

(b)	 The weights should reduce the noise of the difference series; 

(c)	 The influence of inhomogeneities in the reference should be reduced;

(d)	 The similarity of the regional climate signal in the candidate and reference series should be 
enhanced.

These four considerations conflict with each other and the optimal solution is unclear. Consequently, many different 
methods are used to select reference stations and to assign weights to neighbouring stations when computing a 
composite reference from them. Common weighting methods use weights based on correlations, the correlations 
of the first difference series, kriging (optimal interpolation) weights, the inverse distance from the candidate and 
height difference. Also, giving all reference stations the same weight is used to avoid the excessive influence of a very 
inhomogeneous, but very close or very well correlated, neighbouring station.

Stations might be excluded when the distance or the height difference is too large or the correlation too low to select 
references with a similar climate.

In many cases, using distance is similar to using correlations and the correlation between two stations will decay 
reasonably monotonically with the distance between them, but this may, for instance, not be the case in mountains, 
where altitude is also important. The correlation matrix may also be anisotropic, for example, temperatures at an 
exposed coastal station are likely to be better correlated with another similarly exposed station 100 km further along 
the coast than with a station 50 km inland. 

Regarding the correlation between two stations, let B(t) and R(t) denote the candidate series and the potential 
reference series, respectively. The series ΔB(t) = [B(t) – B(t–1)] and ΔR(t) = [R(t) – R(t–1)] are called the first difference 
series. The correlation between the first difference series ΔB(t) and ΔR(t) is often used to select a reference series, 
because this correlation value will be much less affected by any inhomogeneities that might exist in the candidate 
and/or reference series (an inhomogeneity will only generate one bad value in the first difference series, but a segment 
of bad values in the candidate or reference series).
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2.4.1	 Overlap

Data from earlier periods are typically sparser and it is hard to find well-correlated reference 
stations. In order to have reference stations for earlier periods, references with poorer correlations 
may also have to be part of the set of reference stations.

The theoretical minimum number of stations needed for statistical homogenization is three. 
In practice, five stations (four references) are required in order to obtain good results in more 
complex situations. This requirement typically determines the start year of a homogenized 
dataset.

Usually networks have fewer data in the beginning (and sometimes near the end) of their operation. Having 
overlapping stations for the early period normally means that stations with lower correlations need to be selected. 
When adding shorter series to a composite reference, the beginning or the end of the time series can introduce an 
inhomogeneity. Similar problems can arise from missing data periods.

When selecting or weighting references based on their correlations, one should take into account that the computed 
correlations have considerable uncertainties, especially in the case of short series. Thus, a high correlation of a short 
series may be a coincidence and a longer series with a lower correlation may be more reliable.

Short series of a few years are also problematic because the detectability of a break depends on being able to 
detect a statistically significant difference in the mean value before and after a break. Thus, besides the size of the 
inhomogeneity, the number of samples, that is, the length of the homogeneous subperiods, is also important.

2.4.2	 Noise reduction

Kriging provides an optimal estimate of observations at the candidate station, given the 
observations of the references. A composite reference computed as a weighted average of the 
references using kriging weights will reduce the noise of the difference time series optimally. The 
kriging weights are computed using the cross-correlation matrix. 

Because of the other three considerations mentioned above and for ease of use, the correlations 
themselves, or inverse distances, are also often used to compute the weights for a composite 
reference series.

The detectability of an inhomogeneity is mainly a function of the SNR. In the case of one 
breakpoint, the SNR is often defined as the ratio of the size of that inhomogeneity to the standard 
deviation of the time series under consideration. Reducing the amount of noise in a time series by 
using a reference will increase the likelihood of detecting an inhomogeneity of a given size. 

As shown in Figure 4, in the case of one single change point in a data time series of length N=600, the chance for 
reasonably accurate detection of inhomogeneities increases from around 53% when the ratio Δ/SD=0.5 to around 91% 
(99%) when Δ/SD=1.0 (1.5); it is ≥ 99.99% when Δ/SD ≥ 2.0. A lower SNR is also associated with a larger uncertainty 
range of detection power. See section 2.3.1 for a similar argument in relation to the multiple breakpoint case. Trying 
to obtain a SNR higher than 1 is thus a high priority. For higher SNR values, the other three considerations (under 2.4) 
become important.

A pair of stations in pairwise homogenization will have twice as many breaks as a difference 
time series based on a composite reference, because the composite offers a better estimate of 
the regional climate signal than a single station. Thus, if the SNR is low, the use of composite 
references may be preferable.

2.4.3	 Inhomogeneities in the reference

A reference series should be homogeneous or at least be homogeneous around the time the 
candidate series is inhomogeneous. Inhomogeneities in reference series can easily be mistaken 
as inhomogeneities in the candidate series. Such mistakes can be greatly reduced by visualizing 
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the difference series or the regression fits. To reduce the risk that a composite reference may 
have significant inhomogeneities of its own around the time of interest, a sufficient number of 
reference stations needs to have significant weights. 

In case of widespread inhomogeneities occurring in many or all stations over a short period, one 
needs to be very careful when computing a composite reference. The composite may not contain 
visible jumps, but if this widespread inhomogeneity has a bias this will also be present in the 
composite reference. This is especially problematic for computing corrections.

Carefully designed iterative procedures that remove reference stations with breaks from the computation of the 
composite reference or correct the breaks in the reference stations reduce this problem. Pairwise homogenization 
methods are best suited for dealing with such difficult cases, but other methods that run through iterative processes of 
break correction also yield good results.

2.4.4	 References with similar climate signals

The selection of references with similar climate signals is best performed by an expert on the 
basis of an understanding of the local climate. In automatic methods, similarity is often estimated 
by the cross-correlations, together with thresholds for the maximum distance and height 
difference and minimum correlation. 

However, a high correlation does not guarantee that the reference stations are from the same 
climatological region although they share a similar signal. Additional objective criteria could be 
the Köppen climate classes, the size of the seasonal cycle, the daily cycle, the exposure, the soil 
moisture and vegetation. 

In case of low-density networks, the number of reference stations may need to be limited to 
ensure they all belong to the same climate region.

In detection methods that involve counting the number of detected breaks, it is especially important that all stations 
have a similar climate signal. Such a step is sometimes used to collate the results of several break detection tests or in 
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the attribution of pairwise homogenization methods, where the station with the break is determined by the number 
of pairs that have a break. If not all pairs belong to the same climate region, it is possible that many remote reference 
stations may falsely suggest a break, whereas a smaller number of stations from the same climate region would not. In 
such cases, it is appropriate to select fewer reference stations or to apply higher weights to nearby stations.

2.4.5	 Using references

References are mostly used as follows: (a) the difference between candidate and reference 
is used for normally distributed variables; (b) the ratio of candidate to reference is used for 
approximately log-normally distributed variables. 

In the difference series approach, the test is applied to, and the adjustments are estimated from, the difference series 
D(t) = [X(t) – Y(t)] where X denotes the candidate station and Y denotes the reference time series (or station). The ratio 
series would be computed as R(t) = [X(t) / Y(t)]. Temperature and most other variables stem from additive processes 
and have an approximately normal distribution. Monthly precipitation and wind speed are multiplicative processes, 
which produce approximately a log-normal distribution. In some climates, even the monthly averages of these variables 
may contain zeros. In such cases, one can transform the data to an approximately normal distribution and use a 
difference time series.

The covariate approach is less common; it refers to the use of the reference series as a covariate in a regression-based 
test such as the multiple-regression-based test of Vincent (1998). In this case, the test is applied to the residual series of 

the regression of the candidate on the reference series, for example, residuals ε( ) [ ( ) ( )]t B t B t= −   of the fitted 

regression B t a bR t� � �( ) [ ( )]= + .

2.5	 Options if no useful reference station exists 

For some observational series, such as those in northern Canada (most of the sites are 400 
km–800 km apart) on remote islands or in the Antarctic, there is no useful reference available. 
What matters for homogenization is the SNR, not distance; for wind, precipitation or humidity, 
the SNR will be small at much shorter distances than for temperature and especially for sea-level 
pressure. These remote stations are important and have a large weight in regional or global 
mean data series because these sites represent a large area and often provide scientifically 
interesting data from early periods. These situations require expert judgement and are best dealt 
with by retrieving and studying metadata. The following approaches can be used to homogenize 
data from such remote sites.

First, one can look for other related variables or data sources to use as reference. For example, 
for coastal and island stations, sea-surface temperatures may be another possible reference 
series (Cowtan et al., 2018). However, air and sea-surface temperature do have different trends 
and variability. Cloud cover has been used to homogenize sunshine duration observations, and 
sunshine duration data have been used to homogenize surface radiation data (Yang et al., 2018). 
Care must be taken that this does not remove variability in sunshine duration due to variations 
in cloud microphysics and aerosols. Surface-air temperatures from a reanalysis dataset can be 
used as a reference to test surface-air temperature recorded at a remote site, keeping in mind that 
reanalysis data have inhomogeneities of their own.

Second, there are homogenization methods that can be used without using a reference series 
(absolute statistical homogenization). However, homogeneity testing without a reference series 
is much less reliable and should never be done with a fully automatic procedure. One should 
visually inspect the original and deseasonalized candidate series and should study all available 
metadata to determine the final list of change points to be adjusted. Estimation of the size of 
adjustment is also more uncertain in this case. The higher uncertainty of such homogenized 
datasets should be quantified and clearly communicated. 

An important reason why absolute homogenization is less accurate is that the series is “noisier”. Furthermore, this 
“noise” is partially due to long-term variations in the climate system and is harder to distinguish from inhomogeneities 
than uncorrelated noise. 
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The problems can be reduced by identifying and modelling the low-frequency variations within a homogenization 
procedure, for example, using the method developed by Wen et al. (2011). An example of application of this method 
to the Fort Nelson (Canada) cloudiness time series is shown in Figure 5: it identified correctly two shifts, along with 
a 12.5-year cycle, an annual cycle, and a negative trend; the combination of these components is shown as the blue 
curve in the graph. If the 12.5-year cycle in this time series were ignored, that is, if the PMFred algorithm were applied 
to this time series directly, it would identify three false change points and fail to identify the true change point. Such 
noise reduction techniques work especially well for absolute homogenization but can also be explored for relative 
homogenization. 

As mentioned above, reference series may be derived from other variables. For example, Wan et al. (2010) and Minola 
et al. (2016) used geostrophic wind speeds derived from sea-level pressure gradients over a triangular area (formed 
by three stations for surface pressure observations) as a reference series to homogenize surface-wind speed data from 
stations within that area. However, geostrophic wind is probably not a good reference for surface winds over tropical/
subtropical regions and regions of complex topography. Dai et al. (2011) used empirical relationships between the 
anomalies of air temperature and vapor pressure derived from recent observations, when dewpoint depression (DPD) 
reports were available under those conditions, to adjust artificial sampling effects by estimating missing DPD reports 
for cold (T < 30 °C) and dry (DPD artificially set to 30 °C) conditions. For coastal and island stations, sea-surface 
temperatures may be another possible reference series.

Reanalysis is independent of surface data for most variables and thus has potential as a reference series where no other 
suitable reference series exist. This approach has been used for the homogenization of wind on the Iberian Peninsula 
and in Australia (Azorin-Molina et al., 2014 and 2019). For upper-air data, reanalysis data are used in the RAOBCORE 
and RICH datasets (Haimberger et al., 2012).

Because upper-air temperatures (on which reanalyses are based) generally have longer decorrelation length scales 
than surface temperatures, reanalyses may be of value as a reference series where no good surface neighbours exist. 
For the same reason, it is expected that inhomogeneities in the reanalysis would be visible in the difference times series 
with many stations, which may allow the operator to determine whether the inhomogeneity is in the station data or 
the reanalysis. Large-scale break inhomogeneities are present in reanalysis data when satellite datasets are introduced 
or changed. Atmospheric models often have (regional) differences in observations. When more observations become 
available, the reanalysis can thus (gradually) shift from the model base state to observed climatology.

If the data contain a clear break whose size cannot be estimated with sufficient accuracy, absolute homogenization can 
also be used to determine the date of this break and to disregard the data before this cut-off date. However, in the case 
of data sparse regions, such as the Arctic, not using such data can lead to bias. In the case of data from early periods, 
digitization of more data may help resolve the conflict.
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2.6	 Statistical adjustments

The most accurate way to compute corrections is to consider corrections for all breaks in a 
(regional) network simultaneously; this principle is called joint correction. Such a method was 
introduced by Caussinus and Mestre (2004): it decomposes the raw data into a regional climate 
signal for all stations and a step function to model the breaks and noise for every station, which 
is minimized. This method helped to improve the corrections for nearly all contributions to 
the HOME1 benchmarking study (Venema et al., 2012) that were not yet using this method 
(Domonkos et al., 2013). When all breaks are detected, this method on average removes large-
scale trend bias perfectly, while its uncertainty is determined by the noise of the difference time 
series; errors in set of detected breaks lead to undercorrection of any trend errors (Lindau and 
Venema, 2018b).

Many homogenization methods do not set two breakpoints close to each other. It is common 
to treat two nearby breaks as a single break in correction, using data before the first break and 
after the second break as the basis for longer-term adjustments, and treat data between the 
two breaks separately. As an example, in the Australian ACORN-SAT methodology, breaks are 
only treated separately if at least four years apart (Trewin, 2018), and breaks detected using the 
RHtests package with (or without) a reference series are at least five (or 10) data points apart.

These correction methods can be applied to annual, seasonal and monthly data. Many 
inhomogeneities have a seasonal cycle and would not be corrected by computing corrections at 
the annual scale and applying them as fixed corrections for every month. Numerical experiments 
with the PRODIGE homogenization method on the HOME benchmark dataset showed that 
temperature monthly corrections for each calendar month separately were most accurate. 
Because of the seasonal cycle of inhomogeneities, annual corrections performed less well. 
For precipitation, annual corrections were most accurate, although the inhomogeneities did 
have a seasonal cycle. However, the uncertainty of the estimated monthly corrections for each 
calendar month separately was likely too large for precipitation data, leading to less accurate 
homogenized data. Correcting temperature monthly/seasonally and precipitation annually is 
likely a good rule of thumb, although in sparser networks than the typical European ones, as 
studied in HOME, temperature corrections could behave similarly to precipitation corrections. 
The SNR is likely what matters most, rather than the meteorological element.

Correction methods for the distribution of daily data (Trewin and Trevitt, 1996; Della-Marta and Wanner, 2006; 
Mestre et al., 2011; Wang et al., 2010; Wang et al., 2013; Trewin, 2013) can also be used to correct data with a seasonal 
cycle, which typically dominate the total variance. For example, when a Canadian station near the St Lawrence River 
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was moved to an inland site, the inhomogeneity in the daily maximum surface-air temperature series showed a clear 
seasonal cycle (see Figure 6, right panel). The inland site is much warmer in summer, and a little colder in winter than 
the near-river site. 

One practical issue is whether the whole homogeneous subperiod of data record should be used to estimate the 
adjustments. By default, the whole period is used to make full use of the limited amount of data to estimate the 
corrections, but sometimes it may make sense to deviate from this. When the homogeneous subperiod is long, the 
added benefit of more data diminishes, while the risk of remaining inhomogeneities or noticeable differences in climate 
change between candidate and reference increases. This is especially true when the reference is not optimal. When 
absolute homogenization is applied, it is common to limit the periods to 10 years before and after the break. It is best 
not to use (adjusted) data beyond the adjacent homogeneous subperiods.

An additional issue, as discussed earlier, is where the period immediately before or after an 
inhomogeneity is not representative of the broader long-term behaviour of the station. This can 
occur, for example, where a station is moved after a sudden deterioration in its exposure; in such 
cases, it would be appropriate to exclude data between the change in exposure and the site 
move when making longer-term adjustments (see figure 7). In practice, issues of this type are 
often difficult to detect in statistical testing. Also, where the date of the break is uncertain (has an 
SNR below one; Lindau and Venema, 2016), or the statistical breaks and the metadata suggest 
different dates, it can be justified to exclude some data around the break when estimating 
corrections.

The use of composites without removing series with breaks is not recommended for computing 
corrections. The breaks that bias the network average changes the most are those that occur in 
all stations. When this happens over a short period, the reference would have a similar bias as the 
candidate, and the large-scale bias would largely remain after correction.

It is usual practice to correct the data to match the conditions of its most recent homogeneous section. By doing so, 
incoming future data will still be homogeneous unless further changes occur at the station.

2.7	 Data review and multiple rounds of homogenization

The final step is the validation of the homogenized data. No matter how well the data are 
homogenized, perfection will not be achieved, and some residual inhomogeneity will remain in 
the adjusted series. It is necessary to critically evaluate the work and to review the homogenized 
data.

This review should look at individual series and assess whether the new values make sense: 
is the seasonal cycle preserved? Are the values in the expected range for the station? Do 
the adjustments differ radically between adjacent months, etc. If a full dataset has been 
homogenized, it is extremely useful to look at the regional coherence of the temporal evolution 
of the series, as well as to compare the adjustment series with the known changes in the network 
and compute the adjustments made for specific inhomogeneity types. This can involve carrying 
out homogeneity tests on the homogenized data – for example, by comparing them with those 
from other homogenized stations in the region, or testing for anomalous trends at individual 
homogenized stations. If the network includes multiple station types, it can be useful to compare 
them. One may be able to compare the results with previous homogenization exercises and 
neighbouring countries. The consistency among climate elements should also be investigated, 
for example, the mean, maximum and minimum temperature. In addition to quantifying the 
results, visual inspection of the adjustments, homogenized data and difference series can also 
help to identify problems.

In the case of manual homogenization with methods using a composite reference, it is normal for 
an initial homogenization process to fail to fully address all homogeneity issues with the dataset 
under consideration. There are a number of reasons why this can occur; the most common ones 
include:

–	 Undetected inhomogeneities in one or more reference series or in a parallel observation 
pair at one of the stations during the period of parallel observations;
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–	 Anomalous climatic conditions around the time of an inhomogeneity, resulting in an 
unrepresentative adjustment (for example, a particularly wet or dry period immediately 
before or after an inhomogeneity);

–	 Conditions at a site, shortly before or after an adjustment, that are unrepresentative of the 
longer-term record. One common scenario here is where a site move takes place because 
of recent construction work; data from the old site after the work started may not be 
representative of the old site prior to the construction work and should, therefore, not be 
used in determining the required adjustment for a long-term dataset. 

Anomalies can also occur for other reasons; for example, a data quality problem at a station in an 
individual month during a period of parallel observations may, depending on the method used, 
affect adjustments for that month, but not for any other. 

The most effective way of dealing with these issues is to carry out a second-round 
homogenization process in conjunction with a data review.

Where issues are identified through the second-round process, depending on the nature of the 
issue, options for addressing them include:

–	 Repeating the homogenization using a different set of reference stations, if possible. A 
useful approach, if a number of reference series are being used, is to estimate the size of the 
adjustment that would occur when using a single reference station, for each of the stations 
individually, and remove any reference station that generates results that are excessively 
anomalous relative to other reference stations;
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–	 Using a different time period as the basis for adjustment, for example, if a station moved 
in 1951 but a new building was built near the old station in 1949, the period ending in 1948 
(rather than the period ending in 1950 or 1951) should be used as the basis for long-term 
adjustment. 

When making multiple rounds of homogenization, one should never assume that the data of a previous round were 
homogeneous but should compute all corrections anew. Otherwise the solution may drift away from the truth because 
of repeated homogenization.

Sometimes, even after a second (or third) round of homogenization, some stations will still show anomalous trends 
relative to other stations. This may occur because of changes that gradually affect the local climate over an extended 
period (for example, the site being encroached upon by an expanding urban area, or increasing levels of irrigated 
agriculture in a district), or because of natural local effects (for example, a coastal site being cooled by increased 
levels of coastal upwelling in the nearby ocean). If it can be established with a reasonable level of confidence that such 
anomalous trends have a specific non-climatic cause (such as urbanization), one option is to remove them from the 
dataset or to exclude them from some products based on the dataset (for example, not including stations influenced by 
urbanization in assessments of long-term climate change). 

2.8	 Documentation

When an adjusted dataset is produced, the adjustments should be properly documented and 
published. Such documentation should include the dates covered by the adjustment, whether 
the inhomogeneity was identified through statistical methods or metadata and, if possible, what 
the likely cause of the adjustment was. Summary statistics of the influence of adjustments (all and 
per metadata category) can help the user assess the quality of the data. A best practice is to share 
both the raw and homogeneous data as well as the metadata on the identified breaks. 

The methods used in the development of any homogenized dataset should be properly 
documented in an accessible form. This optimally includes an Open Access paper published in 
the peer-reviewed scientific literature. The paper should contain at least a detailed description 
of the methods used, available in the same location as the homogenized data themselves. Best 
practice is to write a clear well-documented code, bearing in mind that it will be published 
alongside the data.

2.9	 Operational maintenance of a homogenized dataset

The initial development of a homogenized dataset is a substantial undertaking. Normally, one of 
the main purposes of homogenized datasets is to serve as the underlying dataset for products 
(for example, a national or global temperature anomaly), which means that for those products 
to continue to be updated, the underlying dataset needs to continue to be updated too. An 
advantage of automatic homogenization methods is that they can be easily applied when new 
data comes in. 

Homogenized datasets tend to be constructed in such a way that the most recent data are unadjusted. This allows the 
dataset to be updated by appending new data without further adjustment. An exception to this may be when the older 
data are considered to be a more reliable long-term reference; for example, in a precipitation network, if the bulk of the 
network is manual but a small number of automatic stations are being introduced, it may be more appropriate to adjust 
the automatic stations so that their data are equivalent to the earlier manual data for better spatial consistency of the 
network as a whole. Another reason to adjust to earlier manual observations is that they are often of higher quality and 
more accurate than automated observations.

Over time, a homogenized dataset will become out of date. There are two major factors that contribute to this. Firstly, 
some stations which are part of the original dataset will close over time (sometimes replaced in the network by new 
stations nearby, which can be used as the basis for a composite). Secondly, new inhomogeneities may occur at stations 
that remain in the dataset. 

24 GUIDELINES ON HOMOGENIZATION



CHAPTER 2. HOMOGENIZATION PRACTICE

It is recommended that a reassessment be undertaken of any homogenized dataset at least every 
five years. This reassessment should include:

–	 A check of the status of all stations in the existing dataset and, if they are closed or no 
longer reporting reliably, whether they can be replaced with an alternative station that can 
become part of a composite record;

–	 A search of recent metadata (covering the period since the last update) for all stations in the 
dataset; 

–	 Incorporation of any relevant historical data that have become available (for example, data 
recently digitized as part of data rescue activities); 

–	 In the case of manual methods, at least a statistical testing for inhomogeneities in the most 
recent part of the record should be made. This includes a reassessment of the last few years 
of the previous version of the dataset, as inhomogeneities in the last (or first) few years of 
a time series are difficult to detect and quantify and the additional new observations may 
allow more reliable assessments to be made. Especially with automatic methods a full 
homogenization of the full dataset is recommended.

2.10	 Network-wide issues and options for dealing with them

On occasions, changes will occur that affect all stations in a national network or a substantial 
proportion of those stations, at the same time or over a period of years. Examples of such 
changes include:

–	 A change in observation time either explicit (such as the change in the observing period 
for daily data from 00.00–00.00 UTC to 06.00–06.00 UTC in Canada in 1961) or implicit 
(for example, Australian stations continued to observe at the same local clock time when 
daylight saving time was introduced in the early 1970s, introducing an effective one-hour 
shift in standard observation time during the summer); 

–	 A major change in instrument type such as a change in standard thermometer screens 
(for example, in the transition to AWSs), or the introduction of a new type of radiosonde 
(upper-air observations are particularly susceptible to this type of change, as they do not 
involve much fixed infrastructure, hence it is possible for any change to be implemented 
rather quickly);

–	 A change in observation procedures or definitions such as a change in the unit of cloud 
amount measurement from 1/10 to 1/8, or a change of units (for example, from Fahrenheit 
to Celsius); 

–	 A change in algorithms used for data analysis – such as a change in the definition of daily 
mean temperature (for example, from the mean of eight 3-hourly observations to the mean 
of the daily maximum and minimum temperature). 

Network-wide changes can be particularly challenging to deal with in a homogenization process. 
Since they normally apply to most or all stations in a particular region, the use of reference 
stations from the same network will be of limited use both in detecting the inhomogeneity and 
in determining its likely impact. In addition, a change whose impact may not be significant or 
detectable at an individual station (for example, a 0.2 °C temperature inhomogeneity) may be 
significant in a national mean, if it affects all stations in a network, or in the global mean, if it 
represents a widespread technological or organizational change. 

Some possible strategies for addressing such changes include:

–	 Changes affecting the entire network are not always mentioned in metadata databases, 
which typically document known changes to individual stations. On the other hand, 
because they are important national events, they are often mentioned in annual reports;

25



–	 If a change affects most, but not all, of the stations in a network (for example, it affects all 
automatic stations, but not manual ones), compare the affected and unaffected stations;

–	 Compare with observations near the border in neighbouring countries that are unaffected 
by the change (this is only effective where there are such stations; it normally requires a 
land border and access to observations from other countries, which may not always be easy 
to obtain); 

–	 Compare with another data type that was not affected by the change. For example, 
compare temperatures at the surface with radiosonde temperatures at 850 hPa (or 
reanalysis fields based on those), or compare measured wind speeds with geostrophic 
winds derived from mean sea-level pressure fields; 

–	 Use alternative data to indicate the possible impact of the change. For example, for a 
historical change in observation time, even though high-resolution sub-daily data from 
the period when the change took place may not be available, it may be possible to use 
high-resolution data from recent years to estimate what the impact of a past observation 
time change may have been. For example, Vincent et al. (2009 and 2012) used hourly 
temperature data to correct a bias in daily minimum temperatures caused by a change in 
observing time across Canada. In Austria (Bӧhm et al., 2010) and Spain (Brunet et al., 2006) 
parallel experiments were performed to quantify the changes due to the transition to 
Stevenson screens.

Such methods can produce reasonably coarse results, and it may only be possible to quantify 
the impact of such inhomogeneities at a national or regional level (or to determine that a change 
had no significant impact at that level), without fully accounting for different impacts that any 
inhomogeneity may have had at individual stations. 

Network-wide inhomogeneities can be solved in different ways depending on the resources 
available. The first version of the US Historical Climate Network dataset contained a physical 
adjustment for the transition from Stevenson screens (Cotton Region shelters) to Maximum-
Minimum Temperature System (MMTS) AWS systems. This transition happened in many 
stations over a short period of time and data were consequently difficult to homogenize using 
statistical homogenization, comparing a candidate station with a composite reference (the 
average signal over several neighbours), because neighbouring stations were often also affected. 
The adjustments were based on estimates of those candidates that had neighbouring stations 
without the transition. After designing a new homogenization method, making pairwise 
comparisons, it became possible to deal with this difficult situation and the physical adjustments 
were no longer applied.

2.11	 Specific challenges for multinational datasets

Combining data from different networks and countries has its advantages as it reduces problems 
with network-wide inhomogeneities. However, developing a homogeneous dataset at a global 
or regional (multinational) scale also presents certain challenges, including:

–	 Large dataset size. Such datasets will often contain information from hundreds or 
thousands of stations. These will normally be beyond the practical size limit for manual 
homogenization methods, requiring the use of automated methods or automation-assisted 
manual methods;

–	 Limited access to metadata. As metadata are normally archived at the national level, 
with only the most basic metadata exchanged internationally, there is often limited or 
no capacity to incorporate metadata into the homogenization process for multinational 
datasets (even if metadata can be accessed, their use will often require interpretation of 
documents in the local language). Sometimes, even determining exactly which station 
the data come from can be challenging, with a major task in global dataset development 
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being identifying and consolidating duplicate datasets from different sources (for example, 
Rennie et al., 2014). The sharing of metadata will hopefully improve with the WMO 
Observing Systems Capability Analysis and Review (OSCAR) Tool.

–	 Limited access to potential reference series and other relevant data. Multinational 
datasets usually consist of data from selected climate stations only. In contrast, in national 
datasets, it is often possible to draw on additional data (for example, shorter-term stations, 
which have too little data to be considered for a long-term dataset but can still be useful 
as reference stations in specific subperiods), as well as data from extra meteorological 
elements and sub-daily data, while global datasets are typically single-element datasets. 
The European Centre for Medium-range Weather Forecasts (ECMWF) is working on a 
multi-element database where observations of several meteorological elements from one 
station are kept together (Dunn and Thorne, 2017).

Consequently, automated homogenization methods are used for such datasets, and correlations between candidate 
and reference series will be lower, making it more difficult to detect smaller inhomogeneities and increasing the 
uncertainty of the adjustments that are made. 

One option is to draw on national-level information to the extent possible. In the HadCRUT global temperature dataset, 
maintained by the University of East Anglia and the UK Met Office, national-level homogenized datasets are used where 
they are available (Jones et al., 2012). Xu et al. (2017) built on and expanded several homogenized national datasets to 
develop a homogenized global dataset.  

2.12	 Conclusion: Good practices for homogenization

Chapter 2 outlined a range of issues and considerations in the development of long-term 
homogeneous datasets. The extent to which these can be implemented will vary widely, 
depending on the access dataset developers have to relevant data and metadata, the tools and 
computer systems available to them, the support they can get, the density of the underlying 
observation network and the size of the dataset under consideration. 

There are a number of principles which can be considered as good practice for data 
homogenization, including:

1.	 Data homogenization is applied most effectively through a combination of statistical 
methods and metadata (for example, Yosef et al., 2018). If this is not possible (for example, 
because metadata are not available or because a lack of reference series makes statistical 
homogenization difficult), homogenization is likely to be less effective. 

2.	 Statistical homogenization should always be applied; it cannot be assumed that metadata 
are perfect.

3.	 If there are known issues with a dataset (for example, a network-wide change of 
observation time), these should be dealt with before more station-specific inhomogeneities 
are considered. Usually, the use of reference series directly or in pairwise comparison will 
not identify network-wide changes. 

4.	 Reference series should be used in statistical homogenization methods if at all possible. 

5.	 It is important to try to obtain an SNR higher than one and it is worthwhile to maximize the 
SNR further.

6.	 Once a draft version of a homogenized dataset has been prepared, methods that assume 
the composite reference to be homogeneous need a second round of homogenization, as 
discussed in section 2.7 above. 

7.	 Homogenized datasets should be fully updated at least every five years. 
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8.	 Where major changes are anticipated, parallel observations should be set up and 
performed for at least two years. A useful document on managing network changes can be 
found in Brandsma et al. (2019).

9.	 When an adjusted dataset is produced, the adjustments should be properly documented 
and published. 

10.	 The methods used in the development of any homogenized dataset should be properly 
documented in an accessible form. 

While no method can guarantee a fully homogeneous dataset, and any homogenized dataset 
will have some level of uncertainty associated with the adjustments involved in creating it, 
following these principles should maximize the likelihood that a dataset will be sufficiently 
homogeneous to be effectively used for the development of long-term climate data products.

28 GUIDELINES ON HOMOGENIZATION



CHAPTER 3. SELECTING STATISTICAL HOMOGENIZATION SOFTWARE

This chapter aims to guide the reader through the numerical methods and software packages 
that can be used for various homogenization tasks. 

3.1	 Statistical homogenization packages

The list and table below describe the publicly available homogenization packages (in 
alphabetical order) used in climatology at the time of writing this publication. New methods 
are regularly being developed and the list below should not be considered exhaustive. Other 
methods are described in the scientific literature but are not included here as their software has 
not yet been released in a form that is usable by the broader community. At the time of writing 
this publication, the table was kept up to date at http://​www​.climatol​.eu/​tt​-hom/​.

Many of the descriptions below refer to a benchmarking study of homogenization methods that 
was part of the HOME project (Venema et al., 2012). Section 3.2.2 contains further discussion of 
this study. 

ACMANT is a homogenization package for temperature and precipitation data. It is one of the 
most accurate automatic methods for homogenizing temperature networks without metadata.

AnClim implements all common detection and correction methods with one graphical user 
interface. The AnClim contribution to the HOME benchmark, using an ensemble approach 
that includes many methods and settings, was not outstanding. The package, however, offers 
access to many methods that can also be used by themselves in the more standard way. AnClim, 
together with ProClimDB (not free), helps automatize many database-related tasks.

Bayesian MDL is a multiple-breakpoint method that is freely available but still at the stage 
of research. It is mentioned for completeness by developers of homogenization methods (Li 
et al., ArXiv 2017). 

Berkeley Earth is a homogenization and interpolation method used for global temperature 
datasets. The homogenization corrections are computed in the interpolation part. Thus, it does 
not return station data but a field or an estimate of the regional climate at the location of the 
station.

Climatol applies the Standard Normal Homogeneity Test (SNHT) to split the series into 
homogeneous subperiods. It computes a full series for every homogeneous subperiod. In its final 
stage, all missing data are estimated from other subperiods of the same station (when available) 
or from neighbouring stations. Climatol is one of the packages that is most tolerant of data gaps 
and one which can make use of available metadata.

GAHMDI solves the multiple-breakpoint problem with a global search algorithm (genetic 
algorithm). It is packaged together with HOMAD, a method to correct the distribution of daily 
data. No intercomparison or documentation is available beyond two published articles (Toreti 
et al., 2010 and 2012).

GSIMCLI uses geostatistical methods to compute the null hypothesis numerically using the 
Monte Carlo approach. It is a new method and there is no information from intercomparison 
studies on its performance. It provides a graphical user interface and automation for networks.

HOMER was designed as part of the COST1 Action HOME, but its performance was not 
benchmarked. It implements several multiple-breakpoint methods. Using the pairwise option, 
it is the successor of the multiple-breakpoint method PRODIGE and thus expected to be one 

1	 European Cooperation in Science and Technology (COST). A funding programme to stimulate collaboration in 
Europe.
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of the best manual methods. It includes the ANOVA correction method, which is likely the 
most accurate correction method available. The joint detection option (R package ‘cghseg’ 
implemented in HOMER) is best not used alone (see Gubler et al., 2017).

iCraddock implements the Craddock test in a pairwise fashion. This manual method is subjective 
but performs well for small networks and is recommended by HOME. It can also be used for daily 
data (Brugnara et al., 2012). 

MASH is an automatic homogenization algorithm based on hypothesis testing that is designed 
to work with inhomogeneous references and uses a multiple-breakpoint approach. It is excellent. 

PHA, or pairwise homogenization algorithm, is used by NOAA to homogenize its national 
(U.S. Historical Climatology Network (USHCN)) and global (Global Historical Climatology 
Network (GHCN)) temperature datasets. It is highly robust and recommended for large datasets. 
It can use metadata.

ReDistribution Test is a single-breakpoint test for vector wind.

RHtests implements several break detection tests taking into account autocorrelations and 
the distance from the edges. RHtests and Anclim are the only methods in this list that have 
the option of homogenizing without a reference. The reference series, where used, must be 
computed by the operator. It includes a test for documented breakpoints. Note that these tests 
are not designed for use with a fully automatic procedure; an analysis of the automated detection 
results is required to finalize the results. 

SNHT refers to an R package in the Comprehensive R Archive Network (CRAN), which 
implements the well-known Standard Normal Homogeneity Test in a way modified by 
Haimberger (2007) and in the pairwise approach used by Menne and Williams (2009).
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Table 1. Overview of the characteristics of homogenization packages 

Package Resolution 
detectiona

Detection 
method Reference useb Resolution 

correctionc
Correction 

method
Primary 

operation
Metadata 

use Variabled Documentatione Reference

ACMANTf Year, 
month

Multiple 
breakpoints Composite

Year, 
month, 
[day]

Joint 
(ANOVA) Automatic No Any User guide

Domonkos 
and Coll 
(2017)

AnClim Year, 
month Many Composite, 

pairwise
Year, 
month, day Several Interactive, 

automatic Yes Any Manuals Štěpánek 
et al. (2009)

Berkeley 
Earth Month Splitting Composite n/a n/a Automatic Yes T Article Rohde 

et al. (2013)

Climatol Month 
(serial), day Splitting Composite Month 

(serial), day
Missing data 
filling Automatic Yes Any Manual and user 

guide
Guijarro 
(2018)

GAHMDI 
HOMAD

Month 
(serial), day

Multiple 
breakpoints Selection Day

Higher-order 
moment 
method

Automatic Yes T None
Toreti 
et al. (2010, 
2012)

GSIMCLI Year, 
month

Multiple 
breakpoints Composite See 

footnoteg
See 
footnoteg

Automatic 
and 
interactive

No T, p Manuals

Ribeiro 
et al. (2017), 
Costa and 
Soares (2009)

HOMER
Year, 
season, 
month

Multiple 
breakpoints

Pairwise, 
joint

Year, 
month

Joint 
(ANOVA) Interactive Yes Any Basic user 

guide+courses
Mestre 
et al. (2013)

iCraddock Year, 
season, 
month

Splitting Pairwise
Year, 
season, 
month, day

Daily: 
smoothed 
monthly 
corrections

Interactive Yes Any None

Craddock 
(1979), 
Brunetti 
et al. (2006)

MASH
Year, 
season, 
month

Multiple 
breakpoints Composite Month, 

[day]
Multiple 
comparisons

Automatic 
and 
interactive

Yes Any User guide Szentimrey 
(2008, 2014)

ReDistribu- 
tion Test Readings Single 

breakpoints No reference n/a n/a Interactive No (but it is 
interactive) Wind None Petrovic 

(2004)

RHtests Year, 
month, day Splitting Selection or 

no reference
Year, 
month, day

Multi-phase 
regression Interactive Yes Any User 

guide+courses

Wang (2008a 
and b), Wang 
and Feng 
(2013)
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Package Resolution 
detectiona

Detection 
method Reference useb Resolution 

correctionc
Correction 

method
Primary 

operation
Metadata 

use Variabled Documentatione Reference

R package 
SNHT

Year, 
month Splitting Composite 

and pairwise Month
Composite 
and multiple 
comparisons

Automatic No T Help files

Haimberger 
(2007), 
Menne and 
Williams, 
(2009)

PHA Year Splitting Pairwise Year, 
[month]

Multiple 
comparisons Automatic Yes T Plain text notes Menne 

et al. (2009)

a If not noted otherwise in the column Resolution, “month” means detection is on multiple monthly series in parallel;
b Options are: Operator reference selection, averaging (composite reference), removing references with breaks from composite (no reference), pairwise, and joint detection;
c Square brackets mean that the resolution is supported by the software, but the corrections are not computed at that resolution;
d Options are: T = temperature; p = precipitation; any = Gaussian and log-normal distribution or additive and multiplicative models;
e A user guide is limited to a few pages and shorter than a manual;
f ACMANT can detect breaks in both annual averages and seasonal cycle in parallel;
g The corrections are computed at the resolution of the data (annual or monthly series). Corrections are applied to a metric computed by GSIMCLI (user-defined: percentile, mean or 

median) of the probability density function (pdf) of the candidate station, which is estimated using composite references. 
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3.2	 Performance of statistical homogenization methods

There are two indications as to whether homogenization has improved a dataset or not. First, 
the breaks found should fit the breaks known from the station history. Second, no more breaks 
would be detected in the dataset if it were homogenized again, and the results should be 
regionally coherent, physically consistent and climatologically plausible (see section 2.7 on data 
review). However, these assessments do not prevent setting too many breaks and removing real 
regional climate variability (over-homogenization). In addition, these indications are not accurate 
enough to help select the best statistical homogenization method. Therefore, we mostly rely on 
what is known about the performance of these methods from the scientific literature for general 
cases to select appropriate homogenization methods. 

There are two lines of evidence on the general performance of statistical homogenization 
methods: theoretical principles (section 3.2.1) and numerical studies (section 3.2.2). They 
strengthen each other and both are needed to gain confidence. The design principle of a 
homogenization method may be theoretically sound but implementation details matter, and the 
method may still perform poorly in a numerical comparison. Conversely, numerical studies only 
test specific scenarios, which may not be realistic for the task at hand, and our understanding 
helps us to figure out what is important and realistic. 

3.2.1	 Theoretical principles

If a normally distributed uncorrelated difference (candidate minus reference) series contains 
one break at a known date, the appropriate test is a simple t-test for the difference in the mean 
before and after the break. If the same series is known to contain only one break at an unknown 
position, multiple testing needs to be considered, and the appropriate test is the Standard 
Normal Homogeneity Test (SNHT) (Alexandersson, 1986) or the Penalized Maximal t Test (PMT) 
(Wang et al., 2007).

However, climate series typically contain more than one break, and the reference series may also 
contain breaks, which should not be falsely attributed to the candidate series. How statistical 
homogenization methods solve these two problems seems to be the main determinant of the 
performance of statistical homogenization methods.

There are three ways to detect multiple breakpoints in one series: 

1.	 Sometimes, single-breakpoint tests are performed over moving windows. However, to 
reduce the probability that there are not multiple breakpoints in the window its length 
needs to be short. This makes the method less sensitive and this approach is not much 
used.2

2.	 Traditionally, single-breakpoint methods are used, and the series is split at the most 
significant breakpoint, after which the two new series are tested again (hierarchical 
splitting and variants thereof). 

3.	 Modern multiple-breakpoint methods effectively test all possible multiple break 
combinations. 

Theoretically, multiple-breakpoint methods are the most accurate way to solve this problem.

2	 The moving-window detection method can be useful when you want to remove only clear breaks, not gradual 
inhomogeneities, for example, to study the gradual (nonlinear) warming due to urbanization one may want to 
remove only the effect of relocations (Zhang et al., 2014).
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There are also several approaches to handling inhomogeneities in the reference series: 

1.	 Averaging over a large number of reference stations. This removes large obvious jumps 
in the composite reference series, but it often happens that a large part of a network 
experiences a similar transition over a few years or decades. The bias due to this transition 
would also largely be in such a composite reference and may reduce detection power. 

2.	 Selecting reference stations without a break around the breakpoint in the candidate 
station or, alternatively, correcting the breaks in the references before using them. These 
approaches must be used iteratively, as the breaks in the references must be known. Using 
previously homogenized data is potentially dangerous. Therefore, such approaches must be 
validated with particular care in case they remove the large-scale biases.

3.	 Detecting breaks on pairs of stations. Here the reference station is not assumed to be 
homogeneous, with breaks in both stations being detected as breaks in the difference series 
between them. A second “attribution” step is necessary to determine which of the breaks 
detected in the pairs belong to which station. 

4.	 Joint detection of all breaks in a network of multiple stations simultaneously. This is a 
complicated combinatorial puzzle and computationally more demanding than the other 
methods.

Joint detection is theoretically the optimal solution. However, at the moment, this method is 
used only in the homogenization package HOMER, which does not work well. So, in practice, 
methods 2 and 3 are preferred.

A modern joint correction method (often called ANOVA) has been developed by Caussinus 
and Mestre (2004). This method disaggregates a network of stations into one regional climate 
signal, a step function for every station to model the inhomogeneities and noise. Corrections are 
computed by minimizing the noise. The corrections of this methods are unbiased if all breaks 
are correctly identified (Lindau and Venema, 2018b). Thus, all breaks should be included in the 
adjustment process, including those that are close to each other. This method has been shown 
to produce more accurate results than traditional methods for the dense European networks 
simulated in HOME (Domonkos et al., 2013).

3.2.2	 Numerical studies

Traditionally, validation studies have focussed on break detection scores of the detection 
methods. This can help understand how the algorithm works, but it is not clear what the optimal 
compromise for climatological analysis of the homogenized data between the hit rate and 
the false alarm rate is. More recent work has included error measures, such as the root mean 
square error and the remaining uncertainty in the trend after homogenization, which assess the 
performance of entire homogenization methods and are of relevance to climatological users of 
the data (Domonkos, 2011; Venema et al., 2012; Williams et al., 2012).

To some extent, the results of validation studies will depend on the metric(s) used for evaluation. 
The way in which homogenization is carried out may also influence the results (for example, 
whether metadata were used, how the algorithms were operated and how well-trained the 
operator was). In the case of manual and semi-automatic methods, clear differences were found 
among operators (Venema et al., 2012), so a clear distinction should be made between the 
homogenization method/package and the validated homogenized datasets (contributions). 
Especially for RHtests, which implements several detection tests and correction methods and 
which can be used in many ways, the results of a validation study may not be representative.

Williams et al. (2012) only studied the pairwise homogenization algorithm, Domonkos (2011) 
compared a large number of automatic homogenization algorithms, while the COST Action 
HOME (Venema et al., 2012) included nearly all state-of-the-art and most-used methods, 
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including several manual ones. It should be borne in mind that these three studies were carried 
out for dense networks, so the performance of the methods will be lower for sparser networks. 
Moreover, the ranking of the methods could be different for other networks. 

These numerical results support the idea that algorithms designed to solve problems related 
to multiple breakpoints and inhomogeneous references can obtain accuracies that are clearly 
higher than traditional methods. HOME recommended the following algorithms: ACMANT, 
iCraddock, MASH and PRODIGE and, for large networks, PHA. Again, it should be noted that 
the recommendation/conclusion could have been different if the study had been done in a 
different way with a different benchmarking dataset. In particular, the HOME results are not 
representative of the whole RHtestsV3 package. Actually, no benchmark study that applies 
methods in a fully automatic procedure can evaluate the whole RHtests because this package 
was designed for interactive operation, including manual or automation-assisted human 
intervention.

The above validation studies involved the generation of an artificial station network where 
the inhomogeneities were known. The HOME benchmark dataset aimed to model networks 
for temperature and precipitation for Europe. Its validation data are quite realistic, but the 
break variance is about two times too high. The study did not include explicit large-scale trend 
biases; they were thus small and difficult to correct. Furthermore, its high station density is not 
representative of the early instrumental period or sparse networks such as those of northern 
European or developing countries. An upcoming benchmarking study of the International 
Surface Temperature Initiative (ISTI; Thorne et al., 2011) aims to resolve these issues (Willett 
et al., 2014). New validation results are being produced in the framework of the MULTITEST 
project (http:/​/​www​​.climatol​​.eu/​MULTITEST/​) at the time of writing these guidelines.

In the HOME benchmark, all contributions made the temperature data more homogeneous, except for the contribution 
using absolute homogenization. This illustrates how dangerous absolute methods can be, especially when they are 
used with a fully automatic procedure as in the benchmark study (see section 2.5). But it should be noted that to make 
the benchmark blind, the regional climate signal used in the HOME dataset was more variable than usual and that 
this dataset was thus more difficult than a real observing dataset case for absolute homogenization. Nevertheless, 
absolute homogenization is generally less reliable and should be used with extra caution and never automatically. For 
precipitation data, only the best methods were able to improve the homogeneity.

Validation studies can also be based on high-quality homogenized data. For example, in Gubler et al. (2017) 
information on inhomogeneities based on data homogenized with high station density was used to study the 
performance of homogenization methods applied to a thinned sparser network. The advantage of this procedure is that 
the inhomogeneities are by definition realistic. The problem is that even with a high station density homogenization 
will not be perfect. These kinds of study provide synergy with those using simulated data. Gubler et al. (2017) studied 
four different ways to operate HOMER and found that HOMER using joint detection should not be used by itself. The 
way in which metadata was used in this study did not improve the results. The breaks due to the transition to AWSs 
were often not detected in the sparse network, while such historical transitions are supposed to be the strength of such 
pairwise methods.

Kuglitsch et al. (2012) also used homogenized Swiss data to validate the PRODIGE and Toreti homogenization 
methods and the FindU.wRef function of RHtestsV3. The results indicate that PRODIGE detects more breaks that can 
be confirmed by metadata, but that it also has a much higher false alarm rate than RHtestsV3 or the Toreti method: 
PRODIGE found 1140 breaks (of which 515 are confirmed by metadata, 45.2%), while the RHtestsV3 and Toreti method 
found respectively 438 and 683 breaks, 72.4% and 70.3% of which are confirmed by metadata. However, only break 
detection accuracy was studied; the study did not evaluate the adjustment methods, nor the entire homogenization 
procedure (that is, detection and adjustment combined). Thus, the effect of overestimating the number of breaks or 
failure to detect real breaks on the homogenization results is unclear.
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3.3	 Automated and manual methods

Homogenization methods may be fully automated, and referred to as automatic methods (that 
is, no human intervention is required beyond the selection of the dataset), or they may involve 
some level of manual intervention, and be referred to as manual methods. Areas that may involve 
human judgement in manual methods include:

–	 The selection of reference stations to be used (whereas an automatic method may use, for 
example, a purely distance-based or correlation-based criterion); 

–	 Merging information from statistical methods and metadata;

–	 Determining which inhomogeneities identified by a statistical method should be retained;

–	 Determining which period to use for a comparison (for example, not using a climatically 
anomalous year or a less reliable data period in comparing two sites). 

Both automatic and manual methods have been used successfully in many countries. Manual methods do have the 
advantage of allowing the introduction of information about a station that may not be easily quantifiable (for example, 
known gradual changes in the local site environment), and also of allowing readier identification of anomalous results 
at individual stations (although the risk of anomalous results is reduced if some of the practices described in section 2.7 
on data review are implemented). Many manual methods can be made fully automated by automation of the related 
human intervention procedure.

However, manual methods do have the disadvantage of being labour-intensive and requiring expert judgement, 
which may not be available in some cases. Furthermore, automatic methods can be better validated because it is easy 
to compute many cases and settings. This promotes faster improvements in the capabilities of automatic methods. 
This also means that we have more reliable estimates of the uncertainties. Additionally, removing uncertainties due to 
human factors increases the likelihood of achieving the accuracy expected from validation studies.

Automated or semi-automated methods are recommended in cases that do not necessarily 
require human judgement (see the four bullet points above) and for operators with limited 
experience in homogenization. They are also the only practical option for very large datasets, 
especially global or regional datasets. 

3.4	 Use cases

The performance of the homogenization methods mentioned in the previous section is an 
important consideration, which will clearly influence the quality of your homogenized data, 
although most of the methods listed in this chapter will at least improve temperature data under 
most conditions. This section presents a range of use cases to illustrate how to weight various 
criteria and select a package that fits a given task. A further consideration is whether the package 
can handle large amounts of metadata. The size of the network is important: the larger it is 
the more automatic methods are preferred. The station density is also an important factor: it is 
easier to carry out homogenization for high-density networks than for medium- to low-density 
networks. 

Moreover, the availability of local expertise or training opportunities are a reason to prefer a 
specific method; for the HOME benchmark, clear differences were found among contributions 
from different operators using the same method, which may be related to experience with the 
method. Automatic methods are less influenced by the availability of such expertise and are 
recommended for less experienced users. But absolute homogenization methods should never 
be applied automatically.

When the significance of documented breaks (breaks at known times) has be determined, 
the RHtests package can be used: it is the only package that can test both documented and 
undocumented breaks in tandem. If a single breakpoint in a difference time series at a known 
time has to be checked, the t-test implemented in many computational science packages can be 
used.
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CHAPTER 3. SELECTING STATISTICAL HOMOGENIZATION SOFTWARE

When the network is too sparse and there are effectively no references that can be used 
(including the availability of reanalysis or proxy series), the only option is to use absolute 
homogenization. Such methods are implemented in RHttests and AnClim software.

For a small network of fewer than 50–100 stations with few data gaps, some knowledge of the 
station history and sufficient time to devote to obtaining a good dataset, both the pairwise 
method in HOMER and iCraddock are good options. Advantages of HOMER over iCraddock are 
that the positions of the breaks in the pairs are determined objectively, which also speeds up the 
task, and HOMER natively supports joint correction. If the network is sparse and the references 
may have slightly different climate signals, iCraddock is a good option because the operator can 
assess graphically whether any differences are climatologically to be expected or give reason 
to suspect an inhomogeneity. When interactive options are not used, ACMANT and MASH can 
also work with small networks. In such cases the operator carefully selects the series to be used 
for homogenization. For very large networks (hundreds or thousands of stations) this becomes 
cumbersome. The size of the network is a relatively flexible consideration: the developer of 
iCraddock homogenized a dataset with about 700 series on the basis of his experience.

For midsized networks (more than 100 stations), the automatic methods ACMANT, Climatol and 
MASH are attractive options. MASH can handle up to 500 stations, ACMANT v.4 up to 5 000, and 
Climatol’s network size is limited only by the available memory in the computer (some thousands 
of stations in practice). Climatol and MASH (if the volume of missing data is not too big) would 
be preferred for making use of available metadata.

The Pairwise Homogenization Algorithm was made for continental and global datasets and can 
also handle messy datasets with short series and missing data. Such would be the main selection 
considerations for this method. With some automated human intervention, the RHtests is the 
only other package that has been used to homogenize a global dataset (Xu et al., 2017).
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CHAPTER 4. HISTORY OF HOMOGENIZATION

The implications of inhomogeneities for data analyses have long been recognized and 
homogenization has a long history. In September 1873, at the International Meteorological 
Congress in Vienna, Carl Jelinek requested information on national multi-annual data series 
(k.k. (kaiserlich-königlich) Hof- und Staatsdruckerei, 1873). Decades later, at the international 
conference for directors of meteorological services in 1905, G. Hellmann (k.k. Zentralanstalt für 
Meteorologie und Geodynamik, 1906) still regretted the absence of homogeneous climatological 
time series due to changes in the surrounding of stations and to new instruments, and pleaded 
for stations with a long record, Säkularstationen (centennial observing stations), to be kept as 
homogeneous as possible. Although this Conference recommended maintaining a sufficient 
number of stations under unchanged conditions, today these basic inhomogeneity problems still 
exist. 

4.1	 Detection and adjustment

In early days, documented change points were removed with the help of parallel measurements. 
Differing observing times at the astronomical observatory of the k.k. University of Vienna 
(Austria) were adjusted by using multi-annual 24-hour measurements of the astronomical 
observatory of the k.k. University of Prague (today Czech Republic). Measurements of Milano 
(Italy), between 1763 and 1834, were adjusted to 24-hour means by using measurements of 
Padova (Kreil, 1854a and b). 

In the early twentieth century, Conrad (1925) applied and evaluated the Heidke criterion 
(Heidke, 1923) using ratios of two precipitation series. As a consequence, he recommended 
the use of additional criteria to test the homogeneity of series dealing with the succession and 
alternation of algebraic signs: the Helmert criterion (Helmert, 1907) and the painstaking Abbe 
criterion (Conrad and Schreier, 1927). The Helmert criterion for pairs of stations and Abbe 
criterion were still described as appropriate tools in the 1940s (Conrad 1944). Some years later, 
the double-mass principle was popularized for break detection (Kohler, 1949). 

4.2	 Reference series

Julius Hann (1880) studied the variability of absolute precipitation amounts and ratios between 
stations. He used these ratios for quality control. This inspired Brückner (1890) to check 
precipitation data for inhomogeneities by comparison with neighbouring stations; he did not 
use any statistics.

In their book, Methods in Climatology, Conrad and Pollak (1950) formalized this relative 
homogenization approach, which is now the dominant method for detecting and removing the 
effects of artificial changes. The building of reference series, by averaging the data from many 
stations in a relatively small geographical area, was subsequently recommended by the WMO 
Working Group on Climatic Fluctuations (WMO, 1966). 

Papers by Alexandersson (1986) and Alexandersson and Moberg (1997) made the Standard 
Normal Homogeneity Test (SNHT) popular. The broad adoption of this test was accompanied by 
clear guidance on how to use the test together with references to homogenize station data. 

4.3	 Modern developments

The Standard Normal Homogeneity Test is a single-breakpoint method, but climate series 
typically contain more than one break. Thus, a major step forward was the design of 
methods specifically conceived to detect and correct multiple change-points and work with 
inhomogeneous references (Szentimrey, 1999; Mestre, 1999; Caussinus and Mestre, 2004). These 
types of method were shown to be more accurate by the benchmarking study of the EU COST 
Action HOME (Venema et al., 2012). 
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A paper by Caussinus and Mestre (2004) also provided the first description of a method that 
corrects all series of a network simultaneously. This joint correction method improved the 
accuracy of all but one contribution to the HOME benchmark which was not yet using this 
approach (Domonkos et al., 2013).

The ongoing work to create appropriate datasets for climate variability and change studies 
promoted the continuous development of better methods for change-point detection and 
correction. To enhance this process the Hungarian Meteorological Service started a series of 
seminars on homogenization in 1996 (Hungarian Meteorological Service, 1996; WMO, 1999; 
OMSZ, 2001; WMO, 2004; WMO, 2006; WMO, 2010; WMO, 2011; WMO, 2014; OMSZ, 2017).
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CHAPTER 5. THEORETICAL BACKGROUND OF HOMOGENIZATION

This chapter considers some theoretical aspects of monthly time series homogenization. It revisits 
many homogenization problems mentioned in earlier chapters be. This chapter is intended for 
users that are interested in a better analytical understanding and for scientists who would like to 
develop their own methods.

In practice, monthly series are homogenized mostly as means. The aim of these homogenization 
procedures is to detect inhomogeneities of the mean and to adjust the series. 

For the detection of inhomogeneities of monthly data and their adjustment, solutions are needed 
for the following mathematical problems: 

–	 Statistical spatio-temporal modelling of the series; 
–	 Methodology for comparison of candidate and reference series;
–	 Breakpoint (change point) and outlier detection;
–	 Methodology for adjustment of series.

This chapter will, furthermore, discuss the following topics:

–	 Quality control procedures; 
–	 Missing data completion;
–	 Usage of metadata;
–	 Manual versus automatic methods;
–	 Evaluation of methods (theoretical, benchmark). 

5.1	 General structure of the additive spatio-temporal models

The statistical spatio-temporal modelling of a series is a fundamental question. Adequate 
comparison, breakpoint detection and adjustment procedures depend on the statistical model 
chosen. If the data series are normally distributed (for example, temperature), the additive 
spatio-temporal model can be used. The general form of this additive model for the monthly 
series of several stations in a small climate region can be written as follows,

	 Xj,m(t) = µm(t) + Sj,m + IHj,m(t) + εj,m(t),  (j = 1,2,…,N; m = 1,2,…,12; t = 1,2,…,n),	 (1)

where 

j = 1,2,…,N station index

m = 1,2,…,12 month index

t = 1,2,…,n year

µm(t) common and unknown climate change signal or temporal expected values or temporal 
trend of the stations

Sj,m
spatial expected values or spatial trend of the stations

IHj,m(t) inhomogeneity signals with type of ’step-like function’, generally assumed with unknown 
breakpoints T and shifts IHj,m(T) – IHj,m(T + 1) ≠ 0, and IHj,m(n) = 0.

Consequently, the expected values or means are:

	 E(Xj,m(t)) = µm(t) + Sj,m + IHj,m(t),  (j = 1,2,  ,N; m = 1,2,…,12; t = 1,2,…,n),

and superimposed on these means are normal noise series, written in vector form: 

	 εm(t) = [ε1,m(t),….., εN,m(t)]T  N(0,Cm),  (m = 1,2,…,12; t = 1,2,…,n).
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The matrices Cm(m = 1,2,…,12) include the spatial covariances between the stations and they 
are assumed to be without any climate change or inhomogeneity over the years. This is because 
the existing methods developed for homogenization of monthly series assume that there is no 
climate change or inhomogeneity in the higher order moments.

In general, the vector noise terms εm(t) also have some temporal autocorrelations, this issue is 
detailed below in Remark 1 (items 1.1 and 1.2).

The aim of homogenization is to detect the inhomogeneity signal IHj,m(t) and to adjust the 
original raw monthly series Xj,m(t) , that is:

	 XH,j,m(t) = Xj,m(t) – IĤj,m(t)  (j = 1,2,…,N; m = 1,2,…,12; t = 1,2,…,n),

where IĤj,m(t) is the estimated inhomogeneity signal. 

Remark 1

In practice there are some differences between absolute and relative methods.

Absolute homogenization: only one station data series is used: N = 1. The main problem of absolute methods is that it 
is essentially impossible to separate the unknown climate change and variability signal µm(t) from the inhomogeneity 
IHj,m(t) without additional information on the variability of the climate signal, for which homogeneous data would be 
needed.

Relative homogenization: data series from more than one station are used and compared to each other, that is, N > 1. 
The comparison makes it possible to filter out the common unknown climate change and variability signal µm(t).

The two basic strategies for solving the problem of homogenization are:

1.1	 The monthly series (Equation 1 above) are examined serially as one time series in 
chronological order. The specific problems raised by this type of examination are:

–	 The annual cycle or seasonality of µm(t), Ej,m, IHj,m(t), Cm(m = 1,2,…,12) the last 
covariances implicitly include the standard deviations and spatial correlations;

–	 The temporal autocorrelation between the elements of adjacent months.

1.2	 The monthly, seasonal and annual series may be examined independently in parallel. 
Then the series examined may be:

–	 The derived monthly series in each calendar month (m = 1,2,…,12)  separately,  
Xj,m(t) = µm(t) + Sj,m+ IHj,m(t) + εj,m(t)  (j = 1,2,…,N; t = 1,2,…,n)

–	 The derived seasonal series in each calendar season  (s = 1,2,3,4) separately, 
Xj,s(t) = µs(t) + Sj,s + IHj,s(t) + εj,s(t)  (j = 1,2,…,N; t = 1,2,…,n) and

–	 The derived annual series, 
Xj,y(t) = µy(t) + Sj,y + IHj,y(t) + εj,y(t)  (j = 1,2,…,N; t = 1,2,…,n).

For this type of examination, there is no need to consider the annual cycle or the seasonality and 
the temporal autocorrelation. In the case of a specific month, season or year, it can be accepted 
that the elements of vector series εm(t)  (t = 1,…,n), εs(t)  (t = 1,…,n) or εy(t)  (t = 1,…,n) are totally 
independent in time. However, after the parallel examinations, a synthesis is necessary for the 
estimated monthly inhomogeneity signals IĤj,m(t) (m = 1,2,…,12). If the data series are quasi 
lognormal distributed (for example, precipitation), a multiplicative model can be used that can 
be transformed into an additive one by applying a logarithmic transformation procedure. 
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5.2	 Methodology for comparison of series in the case of an additive model

In the relative homogenization approach, a chosen candidate station series is compared to the 
other stations as reference series. That removes the common climate change and variability 
signal, which is unknown. 

Using the notation of Equation 1, all the examined station series Xj,m(t) (j = 1,…N) must be taken 
as candidate and reference series alike. Furthermore, the reference series are not assumed to 
be homogeneous since, in general, there is no information about this. The main aim of the 
comparison is to remove the unknown climate change signal µm(t).  

The problems related to series comparison include: 

–	 Pairwise comparison;
–	 Creation of composite reference series;
–	 Constitution of difference series; 
–	 Multiple comparisons of series. 

These topics are very important for detection and adjustment of inhomogeneities, because 
efficient series comparison can increase both detection power and correction accuracy. The 
development of efficient comparison methods can be based on the examination of the spatial 
covariance structure of data series. 

The difference series between pairs are Zj,m(t) = Xj,m(t) – Xj,m(t). However, the constitution of differ-
ence series can be formulated in a more general way as well. 

Assuming that Xj,m(t) is the candidate series and the others are the reference series, then the 
difference series belonging to the candidate series can be constituted as,

	 Z t X t X t IH t IH tj m j m ji m i m
i j

j m ji m i m Z, , , , , , ,( ) ( ) ( ) ( ) ( )= − = − +
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i j
,

≠
∑ = 1  for the 

weighting factors. As a result of the last condition, the unknown climate change and variability 
signal µm(t) has been removed. Consequently, the inhomogeneity can be detected by examining 
the above difference series. Since the difference series (2) generally includes inhomogeneities 
from both candidate and reference, it may be useful to select better quality reference series and 
to create several composite reference series for a candidate series. Multiple comparisons or 
examination of multiple difference series can facilitate the attribution of the detected 
inhomogeneity for the candidate series.

There are three considerations for the selection or weighting of reference series: 

(1)	 To reduce the noise of the difference series;
(2)	 To reduce the influence of inhomogeneities in the reference; 
(3)	 To make sure that the reference series has a regional climate signal similar to that of the candidate. 

To increase the signal-to-noise ratio (SNR) in order to increase the power of detection, we must decrease the variance of 
the noise term εZ j m t,

( ) . The optimal weighting factors   λji,m(t) that minimize the variance are determined by the spatial 

covariance matrices Cm uniquely (optimal interpolation or kriging weights). To reduce the influence of inhomogeneities 
in nearby stations, which get large kriging weights, it may be desirable to average over several stations or give far away 
stations a relatively stronger weight. On the other hand, to make sure that all stations experience the same regional 
climate signal, it may be desirable to limit the number of stations in sparse networks. 

It can be proven mathematically that using the maximum likelihood principle for joint detection and/or joint correction 
(assuming normal distribution) the difference series are examined indirectly, and the weighting factors of the reference 
series are determined by the spatial covariance matrices. We will return to this question in section 5.3.1 on the model 
selection approach using penalized likelihood methods. 
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5.3	 Methodology for breakpoint (changepoint) detection

One of the basic tasks of homogenization is the examination of difference series (2) in order to 
detect the breakpoints and to attribute the appropriate ones to the candidate series. 

The scheme of the breakpoint detection is as follows: let Z(t) be a difference series according to 
the formula (2), that is, 

	 Z(t) = IHz(t) + εZ(t)  (t = 1,…,n),	 (3)

where IHz(t) is a mixed inhomogeneity of difference series Z(t) with breakpoints from candidate and references. In 
general, the number of breakpoints, their positions and sizes are unknown, and we assume εZ(t) is a normal noise 
series. In the case of parallel homogenization (Remark 1, 1.2) εZ(t) is a normal white (uncorrelated) noise series since its 
elements are assumed to be independent in time.  

Remark 2
Outlier detection is the main quality control procedure for the monthly data in this process. If an outlier is not removed, 
it may produce two neighbouring breakpoints whose sizes are the same in absolute value, but with opposite signs.

Returning to the detection procedures, the basic types are hierarchical splitting (stepwise 
detection) and multiple breakpoint detection. The hierarchical splitting procedure is a repeated 
single-breakpoint detection. The multiple breakpoint detection procedures were developed for 
the estimation of all breakpoints in a candidate series.

For the detection of breaks, two classical methods from mathematical statistics are used: 
maximum likelihood estimation and hypothesis testing.

5.3.1	 Breakpoint detection based on maximum likelihood estimation

Penalized likelihood methods are based on model selection (segmentation). In such methods, 
joint maximum likelihood estimation is given for the breakpoints assuming normal distribution 
of the difference series and using some penalty term. The reason for the penalty term is that 
the number of breakpoints is unknown. The methods may be different in the penalty terms or 
criteria, for example, the Akaike criterion (AIC), the Schwarz or Bayesian information criterion 
(BIC) or the Caussinus-Lyazrhi criterion. The penalty terms depend on some a priori probability 
of break at each time.

Theoretically, this methodology could also be applied to the joint detection of the breakpoints 
of all the series examined. However, the joint likelihood function, assuming normal distribution, 
depends on the inverse of the spatial covariance matrix, which can cause complicated technical 
problems in case of larger networks. However, a non-trivial statistical model problem to be 
solved is that the climate signals may be different in larger networks.

5.3.2	 Breakpoint detection based on hypothesis testing

Hypothesis testing is another method for the detection of breakpoints in difference series. 
The null hypothesis is that the series under test is homogeneous and that it is Gaussian white 
noise. Such methods also assume normal distribution, therefore the test statistics are derived 
from the t-type statistics in general. If no reference is used (absolute homogenization) F-type 
statistics are derived because of the regression of the unknown temporal trend. The significance 
and the power of such procedures can be defined according to the probabilities of two types 
of error: type one errors detect false breakpoints, while type two errors miss real breakpoints. 
A compromise between these two types of error must be found. The test statistics can be 
compared to the critical value that depends on the given significance level. In the case of multiple 
test statistics, the critical values can be calculated by Monte Carlo methods. 

Most of these methods are stepwise, iterative single-breakpoint detection methods. However, multiple-breakpoint 
detection procedures can also be developed. The essence of this procedure is that between neighbouring detected 
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breakpoints the homogeneity can be accepted, and between non-neighbouring detected breakpoints the 
homogeneity cannot be accepted. In addition, confidence intervals can also be given for the breakpoints that make the 
automatic use of metadata possible. 

An advantage of these methods is that the results can be evaluated and validated by comparison with the test statistics 
before and after homogenization.

5.3.3	 Attribution of the detected breakpoints for the candidate series

During the breakpoint detection procedures, the difference series are examined with mixed 
inhomogeneities (Equation 2). There are two basic ways to tackle this problem:

1.	 If only one difference series is examined for a candidate series, all the detected breakpoints 
are attributed to the candidate series. In this case, possible inhomogeneities in the 
references are a very serious problem. Therefore, it is necessary to select more, better-
quality reference series for a composite reference series to be created preferably without 
breakpoints (it is recommended to use at least four reference stations). 

2.	 If several difference series are examined for a candidate series, the mixed inhomogeneity 
is less of a problem, but the attribution of the breakpoints to the candidate series is not 
a trivial task. A synthesis is, therefore, necessary and the key task of the homogenization 
software is to apply automatic procedures for the attribution.

5.4	 Methodology for adjustment of series

Besides detection, another basic task is the adjustment of series. Calculation of the adjustment 
factors can be based on the examination of difference series for estimation of shifts at the 
detected breakpoints. In general, point estimation is used for shifts at the detected breakpoints. 

There are methods that use the standard least squares technique after breakpoint detection for 
joint estimation of the shifts of all the series examined. The generalized least squares estimation 
technique based on spatial covariance matrix could be the most efficient in such cases, and it 
would be equivalent to maximum likelihood estimation for the shifts in the normal distribution 
case. However, a non-trivial statistical model problem to be solved is that the climate signals may 
be different in larger networks.

Another method consists in calculating the adjustment factors on the basis of some confidence 
intervals given for the shifts at the detected breakpoints. Such confidence intervals also allow for 
the automatic use of metadata.

Remark 3 
Completing missing data or filling gaps is essentially an interpolation problem. Use of the spatial covariances for the 
calculation of the weighting factors of the predictors is strongly recommended, in order to decrease the interpolation 
error.

5.5	 Possibilities for evaluation and validation of methods

For a real understanding of the available methods, a theoretical evaluation of their mathematical 
basis is indispensable. 

Another possibility is a blind comparison and validation study of the homogenization methods. 
In this case, the methods are tested on a realistic benchmark dataset. The benchmark contains 
simulated data with inserted inhomogeneity. Testing the methods on a generated benchmark 
dataset seems to be an objective validation procedure, however, there are limits to such types of 
examination. 
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The interpretation of benchmark results depends on different factors, such as:

–	 Tested methods (quality, manual or automatic);

–	 Testing benchmark dataset (quality, adequacy);

–	 Operators (skilled or unskilled);

–	 Methodology of evaluation (validation statistics).

The creation of an adequate benchmark dataset and the development of appropriate validation 
statistics are critical points. They require strong theoretical mathematical background, for 
example, to understand which statistical characteristics of a benchmark are important and they 
need to be modelled realistically, possibly with more detailed studies to find out which range is 
realistic in real networks (Lindau and Venema, 2019).

One of the advantages of automatic homogenization methods is that they lend themselves to 
objective validation for two reasons: (a) objective validation needs relatively large datasets to 
perform well and automatic homogenization methods require less effort to homogenize these 
large datasets; (b) in the case of manual methods, not only the method but also the operator is 
assessed, which may bias the results in either direction.
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GLOSSARY 

AIC.  Akaike Information Criterion, a penalty function.

Analysis of variance (ANOVA).  A joint correction method computing all corrections of a network 
simultaneously assuming that all have the same regional climate signal and that breaks 
are a step function. This method minimizes the noise using a least square method, so the 
equations are the same as those of the statistical test for differences in means.

Annual homogenization.  Homogenization using annual data (averages or sums). It may also 
include the magnitude of the seasonal cycle.

Benchmarking.  Performance testing of homogenization methods using realistic open data, 
which typically involves multiple methods, contributions or operators. Benchmarking is a 
community effort and, as such, it is more than just a test for validation of a method.

BIC.  Bayesian Information Criterion, a penalty function.

Candidate/base station.  the station to be homogenized.

Correction.  An adjustment made to raw observations aiming to make them more 
homogeneous. 

Daily homogenization.  Homogenization using daily data (averages or sums). In the case of 
daily homogenization, the default is to consider all days serially in one long time series.

HadCRUT.  Global temperature dataset compiled by the Hadley Centre of the UK Met Office and 
the Climatic Research Unit (CRU) of the University of East Anglia.

Homogeneous sub-period (HSP).  A segment between adjacent changepoints for which the 
data could be considered homogeneous (between the inhomogeneities).

iCOADS.  International Comprehensive Ocean-Atmosphere Data Set

Joint methods.  Homogenization methods that jointly detect or correct all inhomogeneities in 
multiple stations in the same step.

Monthly homogenization.  Homogenization using monthly data (averages or sums). This can 
be done with 12 monthly time series in parallel (default) or with all months considered as 
one long time series. Often in combination with annual homogenization.

Multiple-breakpoint method.  Homogenization method that detects or corrects multiple 
inhomogeneities in one station/time series in the same step.

PMT.  Penalized Maximal t Test

PRODIGE.  A homogenization method. A multiple-breakpoint homogenization method based 
on the Caussinus-Lyazrhi criterion.

Reference time series.  An independent time series used to assess the homogeneity of a 
candidate station, usually a neighbouring station or derived from several neighbouring 
stations.

Seasonal homogenization.  Homogenization using seasonal data (averages or sums). This can 
be done with four seasonal time series in parallel (default) or with all seasons considered as 
one long time series. Often in combination with annual homogenization.



GLOSSARY

Shelter/screen.  Enclosure to shield meteorological instruments to adequately record 
atmospheric conditions in accordance with WMO standards. There are many different types 
of screen. 

UTC.  Universal Time Coordinated
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